posts: 4315
Data license: CC-BY
This data as json
id | title | slug | type | status | content | archieml | archieml_update_statistics | published_at | updated_at | gdocSuccessorId | authors | excerpt | created_at_in_wordpress | updated_at_in_wordpress | featured_image | formattingOptions | markdown | wpApiSnapshot |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4315 | Natural Disasters | natural-disasters | page | publish | <!-- wp:paragraph --> <p>Natural disasters – from earthquakes and floods to storms and droughts – affect millions of people every year. However, we are not defenseless against them, and the global death toll, especially from droughts and floods, has been reduced.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>While natural disasters account for a small fraction of <a href="https://ourworldindata.org/causes-of-death">all deaths globally</a>, they can have a large impact, especially on vulnerable populations in low-to-middle-income countries with insufficient infrastructure to protect and respond effectively. Understanding the frequency, intensity, and impact of natural disasters is crucial if we want to be better prepared and protect people’s lives and livelihoods.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>On this page, you will find our complete collection of data, charts, and research on natural disasters and their human and economic costs.</p> <!-- /wp:paragraph --> <!-- wp:html --> <iframe class="wp-block-full-content-width" src="https://ourworldindata.org/explorers/natural-disasters?facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL" style="width: 100%; min-height: 740px; max-height: 950px; height: 100vh; border: 0px none !important;"></iframe> <!-- /wp:html --> <!-- wp:paragraph --> <p>→ <a href="https://ourworldindata.org/explorers/natural-disasters">Open the Data Explorer</a> in a new tab.</p> <!-- /wp:paragraph --> <!-- wp:separator --> <hr class="wp-block-separator"/> <!-- /wp:separator --> <!-- wp:owid/summary --> <!-- wp:list --> <ul><li><a href="https://ourworldindata.org/natural-disasters#natural-disasters-kill-tens-of-thousands-each-year">Natural disasters kill on average 45,000 people per year, globally.</a></li><li><a href="https://ourworldindata.org/natural-disasters#what-share-of-deaths-are-from-natural-disasters">Globally, disasters were responsible for 0.1% of deaths over the past decade. This was highly variable, ranging from 0.01% to 0.4%.</a></li><li><a href="https://ourworldindata.org/natural-disasters#natural-disasters-kill-tens-of-thousands-each-year">Deaths from natural disasters have seen a large decline over the past century – from, in some years, millions of deaths per year to an average of 60,000 over the past decade.</a></li><li><a href="https://ourworldindata.org/natural-disasters#number-of-deaths-by-type-of-natural-disaster">Historically, droughts and floods were the most fatal disaster events. Deaths from these events are now very low – the most deadly events today tend to be earthquakes.</a></li><li><a href="https://ourworldindata.org/natural-disasters#link-between-poverty-and-deaths-from-natural-disasters">Disasters affect those in poverty most heavily: high death tolls tend to be centered in low-to-middle income countries without the infrastructure to protect and respond to events.</a></li></ul> <!-- /wp:list --> <!-- /wp:owid/summary --> <!-- wp:heading --> <h2>Natural disasters kill tens of thousands each year</h2> <!-- /wp:heading --> <!-- wp:paragraph --> <p>The number of deaths from natural disasters can be highly variable from year-to-year; some years pass with very few deaths before a large disaster event claims many lives.<br><br>If we look at the average over the past decade, approximately 45,000 people globally died from natural disasters each year. This represents around 0.1% of global deaths.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>In the visualizations shown here we see the annual variability in the number and share of deaths from natural disasters in recent decades.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>What we see is that in many years, the number of deaths can be very low – often less than 10,000, and accounting for as low as 0.01% of total deaths. But we also see the devastating impact of shock events: the 1983-85 <a href="https://owid.cloud/famines">famine</a> and drought in Ethiopia; the <a href="https://en.wikipedia.org/wiki/2004_Indian_Ocean_earthquake_and_tsunami">2004 Indian Ocean earthquake and tsunami</a>; <a href="https://en.wikipedia.org/wiki/Cyclone_Nargis">Cyclone Nargis</a> which struck Myanmar in 2008; and the <a href="https://en.wikipedia.org/wiki/2010_Haiti_earthquake">2010 Port-au-Prince earthquake</a> in Haiti. All of these events pushed global disasters deaths over 200,000 – more than 0.4% of deaths in these years.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. We know from historical data that the world has seen a significant reduction in disaster deaths through earlier prediction, more resilient infrastructure, emergency preparedness, and response systems.<br><br>Those at low incomes are often the most vulnerable to disaster events: improving living standards, infrastructure and response systems in these regions will be key to preventing deaths from natural disasters in the coming decades.</p> <!-- /wp:paragraph --> <!-- wp:html --> <iframe src="https://ourworldindata.org/explorers/natural-disasters?time=1978..latest&facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=false&country=~OWID_WRL&hideControls=true" loading="lazy" style="width: 100%; height: 600px; border: 0px none;"></iframe> <!-- /wp:html --> <!-- wp:html --> <iframe src="https://ourworldindata.org/grapher/share-deaths-from-natural-disasters?tab=chart" style="width: 100%; height: 600px; border: 0px none;"></iframe> <!-- /wp:html --> <!-- wp:heading --> <h2>What share of deaths are from natural disasters?</h2> <!-- /wp:heading --> <!-- wp:paragraph --> <p>Globally, over the past decade, natural disasters accounted for an average of 0.1% of total deaths. This was, however, highly variable to high-impact events and ranged from 0.01% to 0.4% of total deaths.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>In the map shown here you can explore these trends by country over the past few decades. Using the timeline on the chart you can observe changes across the world over time, or by clicking on a country you can see its individual trend.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>What we observe is that for most countries the share of deaths from natural disasters are very low in most years. Often it can be zero – with no loss of life to disasters – or well below 0.01%. But we also see clearly the effects of low-frequency but high-impact events: in 2010, more than 70% of deaths in Haiti were the result of the <a href="https://en.wikipedia.org/wiki/2010_Haiti_earthquake">Port-au-Prince earthquake</a>. </p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe src="https://ourworldindata.org/grapher/share-deaths-from-natural-disasters"></iframe></figure> <!-- /wp:html --> <!-- wp:heading --> <h2>Number of deaths from natural disasters</h2> <!-- /wp:heading --> <!-- wp:heading {"level":3} --> <h3>Annual deaths from natural disasters</h3> <!-- /wp:heading --> <!-- wp:paragraph --> <p>In the visualization shown here we see the long-term global trend in natural disaster deaths. This shows the estimated annual number of deaths from disasters from 1900 onwards from the <a href="https://www.emdat.be/">EMDAT International Disaster Database</a>.{ref}EMDAT (2019): OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium{/ref}</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>What we see is that in the early-to-mid 20th century, the annual death toll from disasters was high, often reaching over one million per year. In recent decades we have seen a substantial decline in deaths. In most years fewer than 20,000 die (and in the most recent decade, this has often been less than 10,000). Even in peak years with high-impact events, the death toll has not exceeded 500,000 since the mid-1960s. </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>This decline is even more impressive when we consider the rate of <a href="https://owid.cloud/world-population-growth">population growth</a> over this period. When we correct for population – showing this data in terms of death rates (measured per 100,000 people) – we see an even greater decline over the past century. This chart can be viewed <strong><a href="https://ourworldindata.org/explorers/natural-disasters?facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=true&country=~OWID_WRL">here</a></strong>.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>The annual number of deaths from natural disasters is also available by country since 1990. This can be explored in the interactive map.</p> <!-- /wp:paragraph --> <!-- wp:html --> <iframe src="https://ourworldindata.org/explorers/natural-disasters?facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=false&country=~OWID_WRL&hideControls=true" loading="lazy" style="width: 100%; height: 600px; border: 0px none;"></iframe> <!-- /wp:html --> <!-- wp:html --> <iframe src="https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=false&country=~OWID_WRL&hideControls=true" loading="lazy" style="width: 100%; height: 600px; border: 0px none;"></iframe> <!-- /wp:html --> <!-- wp:heading {"level":3} --> <h3>Average number of deaths by decade</h3> <!-- /wp:heading --> <!-- wp:paragraph --> <p>In the chart we show global deaths from natural disasters since 1900, but rather than reporting annual deaths, we show the annual average by decade.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>As we see, over the course of the 20th century there was a significant decline in global deaths from natural disasters. In the early 1900s, the annual average was often in the range of 400,000 to 500,000 deaths. In the second half of the century and into the early 2000s, we have seen a significant decline to less than 100,000 – at least five times lower than these peaks. <br><br>This decline is even more impressive when we consider the rate of <a href="https://owid.cloud/world-population-growth">population growth</a> over this period. When we correct for population – showing this data in terms of death rates (measured per 100,000 people) – then we see a more than 10-fold decline over the past century. This chart can be viewed <a href="https://ourworldindata.org/grapher/decadal-average-death-rates-from-natural-disasters?country=~OWID_WRL"><strong>here</strong></a>.</p> <!-- /wp:paragraph --> <!-- wp:html --> <iframe src="https://ourworldindata.org/grapher/decadal-deaths-disasters-type?country=OWID_WRL~" loading="lazy" style="width: 100%; height: 600px; border: 0px none;"></iframe> <!-- /wp:html --> <!-- wp:heading {"level":3} --> <h3>Number of deaths by type of natural disaster</h3> <!-- /wp:heading --> <!-- wp-block-tombstone 49104 --> <!-- wp:columns --> <div class="wp-block-columns"><!-- wp:column --> <div class="wp-block-column"><!-- wp:paragraph --> <p>With almost minute-by-minute updates on what’s happening in the world, we are constantly reminded of the latest disaster. These stories are, of course, important but they do not give us a sense of how the toll of disasters has changed over time. </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>For most of us, it is hard to know whether any given year was a particularly deadly one in the context of previous years.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>To understand the devastating toll of disasters today, and in the past, we have built a <a href="http://ourworldindata.org/explorers/natural-disasters">Natural Disasters Data Explorer</a> which provides estimates of fatalities, displacement and economic damage for every country since 1900. This is based on data sourced from EM-DAT; a project that undertakes the important work of building these incredibly detailed histories of disasters.{ref}EM-DAT, CRED / UCLouvain, Brussels, Belgium – <a href="http://www.emdat.be">www.emdat.be</a> (D. Guha-Sapir){/ref} </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>In this visualization I give a sense of how the global picture has evolved over the last century. It shows the estimated annual death toll – from all disasters at the top, followed by a breakdown by type. The size of the bubble represents the total death toll for that year.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>I’ve labeled most of the years with the largest death tolls. This usually provokes the follow-up question: “Why? What event happened?”. So I’ve also noted large-scale events that contributed to the majority – <em>but not necessarily all </em>– of the deaths in that year. </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>For example, the estimated global death toll from storms in 2008 was approximately 141,000. 138,366 of these deaths occurred in Cyclone Margis, which struck Myanmar, and is labeled on the chart.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>What we see is that in the 20th century, it was common to have years where the death toll was in the millions. This was usually the result of major droughts or floods. Often these would lead to famines. My colleague Joe Hasell looks at the long history of famines <a href="http://ourworldindata.org/famines"><strong>here</strong></a>.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Improved food security, resilience to other disasters, and better national and international responses mean that the world has not experienced death tolls of this scale in many decades. Famines today are usually driven by civil war and political unrest.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>In most years, the death toll from disasters is now in the range of 10,000 to 20,000 people. In the most fatal years – which tend to be those with major earthquakes or cyclones – this can reach tens to hundreds of thousands.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>This trend does not mean that disasters have become less frequent, or less intense. It means the world today is much better at <em>preventing deaths</em> from disasters than in the past. This will become increasingly important in our response and adaptation to <a href="http://ourworldindata.org/climate-change">climate change</a>.</p> <!-- /wp:paragraph --></div> <!-- /wp:column --> <!-- wp:column --> <div class="wp-block-column"><!-- wp:image {"id":49109,"sizeSlug":"full","linkDestination":"none"} --> <figure class="wp-block-image size-full"><img src="https://owid.cloud/app/uploads/2022/02/Deaths-from-disasters-bubbles-1.png" alt="" class="wp-image-49109"/></figure> <!-- /wp:image --></div> <!-- /wp:column --></div> <!-- /wp:columns --> <!-- wp:heading --> <h2>Injuries and displacement from disasters</h2> <!-- /wp:heading --> <!-- wp:paragraph --> <p>Human impacts from natural disasters are not fully captured in mortality rates. Injury, homelessness, and displacement can all have a significant impact on populations.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>The visualisation below shows the number of people displaced internally (i.e. within a given country) from natural disasters. Note that these figures report on the basis of new cases of displaced persons: if someone is forced to flee their home from natural disasters more than once in any given year, they will be recorded only once within these statistics.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Interactive charts on the following global impacts are available using the links below:</p> <!-- /wp:paragraph --> <!-- wp:list --> <ul><li><strong><a href="https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Injuries&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL" target="_blank" rel="noreferrer noopener">Injuries</a></strong>: number of people injured is defined as "People suffering from physical injuries, trauma or an illness requiring immediate medical assistance as a direct result of a disaster."</li><li><strong><a href="https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Homeless&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL" target="_blank" rel="noreferrer noopener">Homelessness</a></strong>: number of people homeless is defined as "Number of people whose house is destroyed or heavily damaged and therefore need shelter after an event."</li><li><a href="https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Affected&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL" target="_blank" rel="noreferrer noopener"><strong>Affected</strong></a>: number of people affected is defined as "People requiring immediate assistance during a period of emergency, i.e. requiring basic survival needs such as food, water, shelter, sanitation and immediate medical assistance."</li><li><a href="https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Total+affected&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL" target="_blank" rel="noreferrer noopener"><strong>Total number affected</strong></a>: total number of people affected is defined as "the sum of the injured, affected and left homeless after a disaster."</li></ul> <!-- /wp:list --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/internally-displaced-persons-from-disasters" width="300" height="150"></iframe></figure> <!-- /wp:html --> <!-- wp:heading --> <h2>Natural disasters by type</h2> <!-- /wp:heading --> <!-- wp:heading {"level":3} --> <h3>Earthquakes</h3> <!-- /wp:heading --> <!-- wp:heading {"level":4} --> <h4>Earthquake events</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>Earthquake events occur across the world every day. The US Geological Survey (USGS) tracks and reports global earthquakes, with (close to) real-time updates which you can <strong><a href="https://earthquake.usgs.gov/earthquakes/map/" target="_blank" rel="noopener noreferrer">find here</a></strong>.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>However, the earthquakes which occur most frequently are often too small to cause significant damage (whether to human life, or in economic terms).</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>In the chart below we show the long history of known earthquakes classified by the <a href="https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1" target="_blank" rel="noopener noreferrer">National Geophysical Data Center (NGDC) of the NOAA</a> as 'significant' earthquakes. Significant earthquakes are those which are large enough to cause notable damage. They must meet at least one of the following criteria: caused deaths, moderate damage ($1 million or more), magnitude 7.5 or greater, Modified Mercalli Intensity (MMI) X or greater, or generated a tsunami.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Available data — which you can explore in the chart below — extends back to 2150 BC. But we should be aware that most recent records will be much more complete than our long-run historic estimates. An increase in the number of recorded earthquakes doesn't necessarily mean this was the true trend over time. By clicking on a country in the map below, you can view it's full series of known significant earthquakes.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/significant-earthquakes"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":4} --> <h4>Deaths from earthquakes</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>Alongside estimates of the number of earthquake events, the National Geophysical Data Center (NGDC) of the NOAA also publish estimates of the number of deaths over this long-term series. In the chart below we see the estimated mortality numbers from 2000 BC through to 2017.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>These figures can be found for specific countries using the "change country" function in the bottom-left of the chart, or by selecting the "map" on the bottom-right.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>At the global level we see that earthquake deaths have been a persistent human risk through time.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/earthquake-deaths"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":4} --> <h4>What were the world's deadliest earthquakes?</h4> <!-- /wp:heading --> <!-- wp-block-tombstone 26517 --> <!-- wp:paragraph --> <p>The number of people dying in natural disasters is <a href="https://ourworldindata.org/natural-disasters#number-of-deaths-from-natural-disasters">lower today</a> than it was in the past; the world has become more resilient.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Earthquakes, however, can still claim a large number of lives. Whilst historically, floods, droughts, and epidemics dominated disaster deaths, a high annual death toll in recent years often results from a major earthquake and possibly a tsunami caused by them. Since 2000, the two peak years in annual death tolls (reaching hundreds of thousands) were 2004 and 2010. Earthquake deaths accounted for 93 percent and 69 percent of disaster deaths, respectively. Both events (the Sumatra earthquake and tsunami of 2004 and the Port-au-Prince earthquake in 2010) are in the deadliest earthquake rankings below.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>What have been the most deadly earthquakes in human history? In the visualization, we have mapped the top 10 rankings of known earthquakes, which resulted in the largest number of deaths.{ref}Since two events are ranked equally in 8th place, a total of 11 are included.{/ref} This ranking is based on mortality estimates from the NOAA's National Geophysical Data Center (NGDC).{ref}National Geophysical Data Center / World Data Service (NGDC/WDS): Significant Earthquake Database. National Geophysical Data Center, NOAA. Available at: <a rel="noreferrer noopener" href="https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1" target="_blank">https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1</a>.{/ref}</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Clicking on the visualization will open it in higher resolution. This ranking is also summarized in table form.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>The most deadly earthquake in history was in Shaanxi, China in 1556. It's estimated to have killed 830,000 people. This is more than twice that of the second most fatal: the recent Port-au-Prince earthquake in Haiti in 2010. It's reported that 316,000 people died as a result.{ref}The death toll of the Haitian earthquake is still disputed. Here, we present the adopted figure by the NGDC of the NOAA (for consistency with other earthquakes); this is the figure reported by the Haitian government. Some sources suggest a lower figure of 220,000. In the latter case, this event would fall to 7th place in the above rankings.{/ref}</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Two very recent earthquakes — the Sumatra earthquake and tsunami of 2004 and the 2010 Port-au-Prince earthquake — feature amongst the most deadly in human history. But equally, some of the most fatal occurred in the very distant past. The third deadliest was the earthquake in Antakya (Turkey) in 115 CE. Both old and very recent earthquakes feature near the top of the list. The deadly nature of earthquakes has been a persistent threat throughout our history.</p> <!-- /wp:paragraph --> <!-- wp:image {"align":"center","id":20882,"linkDestination":"custom"} --> <div class="wp-block-image"><figure class="aligncenter"><a href="https://owid.cloud/app/uploads/2018/10/Deadliest-earthquakes.png"><img src="https://owid.cloud/app/uploads/2018/10/Deadliest-earthquakes-750x508.png" alt="" class="wp-image-20882"/></a></figure></div> <!-- /wp:image --> <!-- wp:shortcode --> <table><thead><tr><th scope="col" colSpan="1">Ranking</th><th scope="col" colSpan="1">Location</th><th scope="col" colSpan="1">Year</th><th scope="col" colSpan="1">Estimated death toll</th><th scope="col" colSpan="1">Earthquake magnitude </th><th scope="col" colSpan="1">Additional information</th></tr></thead><tbody><tr><td colSpan="1" rowspan="1">1</td><td colSpan="1" rowspan="1">Shaanxi, China</td><td colSpan="1" rowspan="1">1556</td><td colSpan="1" rowspan="1">830,000</td><td colSpan="1" rowspan="1">8</td><td colSpan="1" rowspan="1">More than <a href="https://en.wikipedia.org/wiki/1556_Shaanxi_earthquake">97 counties in China</a> were affected. A 520-mile wide area destroyed. In some counties it's estimated that up to 60% of the population died. Such catastrophic losses are attributed to loess cave settlements, which collapsed as a result.</td></tr><tr><td colSpan="1" rowspan="1">2</td><td colSpan="1" rowspan="1">Port-au-Prince, Haiti</td><td colSpan="1" rowspan="1">2010</td><td colSpan="1" rowspan="1">316,000</td><td colSpan="1" rowspan="1">7</td><td colSpan="1" rowspan="1">Death toll is still disputed. Here we present the adopted figure by the NGDC of the NOAA (for consistency with other earthquakes); this is the figure reported by the Haitian government. Some sources suggest a lower figure of 220,000. In the latter case, this event would fall to 7th place in the above rankings.</td></tr><tr><td colSpan="1" rowspan="1">3</td><td colSpan="1" rowspan="1">Antakya, Turkey</td><td colSpan="1" rowspan="1">115</td><td colSpan="1" rowspan="1">260,000</td><td colSpan="1" rowspan="1">7.5</td><td colSpan="1" rowspan="1">Antioch (ancient ruins which lie near the modern city Antakya) and surrounding areas suffered severe damage. Apamea was <a href="https://www.sciencedirect.com/science/article/pii/S0012821X03001444">also destroyed and Beirut suffered severe damage</a>. A local <a href="https://www.earth-prints.org/bitstream/2122/908/1/01Sbeinati.pdf">tsunami was triggered</a> causing damage to the coast of Lebanon.</td></tr><tr><td colSpan="1" rowspan="1">4</td><td colSpan="1" rowspan="1">Antakya, Turkey</td><td colSpan="1" rowspan="1">525</td><td colSpan="1" rowspan="1">250,000</td><td colSpan="1" rowspan="1">7</td><td colSpan="1" rowspan="1">Severe damage to the area of the Byzantine Empire. The earthquake caused severe damage to many buildings. However, severe damage was also <a href="https://www.earth-prints.org/bitstream/2122/908/1/01Sbeinati.pdf">caused by fires in the aftermath</a> combined with strong wind.</td></tr><tr><td colSpan="1" rowspan="1">5</td><td colSpan="1" rowspan="1">Tangshan, China</td><td colSpan="1" rowspan="1">1976</td><td colSpan="1" rowspan="1">242,769</td><td colSpan="1" rowspan="1">7.5</td><td colSpan="1" rowspan="1">Reported that the earthquake risk had been greatly underestimated meaning almost all buildings and structures were designed and built without seismic considerations. Estimated that <a href="https://authors.library.caltech.edu/26539/">up to 85% of buildings collapsed</a>. Tangshan therefore large comprised of <a href="https://www.nap.edu/login.php?record_id=19764">unreinforced brick buildings</a> which resulted in a large death toll.</td></tr><tr><td colSpan="1" rowspan="1">6</td><td colSpan="1" rowspan="1">Gyzndzha, Azerbaijan</td><td colSpan="1" rowspan="1">1139</td><td colSpan="1" rowspan="1">230,000</td><td colSpan="1" rowspan="1">Unknown</td><td colSpan="1" rowspan="1">Often <a href="https://www.seismology.az/en/stations/5#.W7aH-ZM-eL8">termed the Ganja earthquake</a>. Much less is documented on the specific details of this event.</td></tr><tr><td colSpan="1" rowspan="1">7</td><td colSpan="1" rowspan="1">Sumatra, Indonesia</td><td colSpan="1" rowspan="1">2004</td><td colSpan="1" rowspan="1">227,899</td><td colSpan="1" rowspan="1">9.1</td><td colSpan="1" rowspan="1">Earthquake in Indian Ocean off the coast of Sumatra resulted in a series of large tsunamis (<a href="https://soundwaves.usgs.gov/2005/03/">ranging 15 to 30 metres in height</a>). Victims across 14 countries in the regions with Indonesia being the hardest-hit, followed by Sri Lanka, India and Thailand. There was no tsunami warning system in place.</td></tr><tr><td colSpan="1" rowspan="1">=8</td><td colSpan="1" rowspan="1">Damghan, Iran</td><td colSpan="1" rowspan="1">856</td><td colSpan="1" rowspan="1">200,000</td><td colSpan="1" rowspan="1">7.9</td><td colSpan="1" rowspan="1">Estimated that <a href="https://en.wikipedia.org/wiki/856_Damghan_earthquake">extent of the damage area was 220 miles long</a>. It's also hypothesised that the ancient city of Šahr-e Qumis was so badly damaged that it was abandoned after the earthquake.</td></tr><tr><td colSpan="1" rowspan="1">=8</td><td colSpan="1" rowspan="1">Gansu, China</td><td colSpan="1" rowspan="1">1920</td><td colSpan="1" rowspan="1">200,000</td><td colSpan="1" rowspan="1">8.3</td><td colSpan="1" rowspan="1">Damage occurred <a href="https://en.wikipedia.org/wiki/1920_Haiyuan_earthquake">across 7 provinces and regions</a>. In some cities almost all buildings collapsed, or were buried by landslides. It was reported than additional deaths occurred due to cold exposure: fear from aftershocks meant survivors tried to rely only on temporary shelters which were unsuitable for the harsh winter.</td></tr><tr><td colSpan="1" rowspan="1">9</td><td colSpan="1" rowspan="1">Dvin, Armenia</td><td colSpan="1" rowspan="1">893</td><td colSpan="1" rowspan="1">150,000</td><td colSpan="1" rowspan="1">Unknown</td><td colSpan="1" rowspan="1">City of Dvin was destroyed, with the collapse of most buildings, defensive walls and palaces; <a href="https://www.earth-prints.org/bitstream/2122/1795/1/22%20hasrat'yan.pdf">estimated that only 100 buildings were left standing</a>. With its city defences ruined, Dvin was <a href="https://en.wikipedia.org/wiki/893_Dvin_earthquake">taken over and turned into a military base</a> by Muhammad ibn Abi'l-Saj, the Sajid emir of Adharbayjan.</td></tr><tr><td colSpan="1" rowspan="1">10</td><td colSpan="1" rowspan="1">Tokyo, Japan</td><td colSpan="1" rowspan="1">1923</td><td colSpan="1" rowspan="1">142,807</td><td colSpan="1" rowspan="1">7.9</td><td colSpan="1" rowspan="1">More than <a href="https://www.britannica.com/event/Tokyo-Yokohama-earthquake-of-1923">half of brick buildings, and 10% of reinforced structures</a> collapsed. Caused a tsunami with height up to 12m. Large fires broke out; combined with a large tornado, these spread quickly. </td></tr></tbody></table> <!-- /wp:shortcode --> <!-- wp:heading {"level":3} --> <h3>Volcanoes</h3> <!-- /wp:heading --> <!-- wp:heading {"level":4} --> <h4>Number of significant volcanic eruptions</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>There are a large number of volcanoes across the world which are volcanically active, but display little or only very low-level activity.<br><br>In the map we see the number of <em>significant</em> volcanic eruptions which occur in each country in a given year. A significant eruption is classified as one that meets at least one of the following criteria: caused fatalities, caused moderate damage (approximately $1 million or more), with a <a href="https://ourworldindata.org/natural-disasters#volcanic-explosivity-index-vei">Volcanic Explosivity Index</a> of 6 or larger, caused a tsunami, or was associated with a major earthquake.{ref}This data is sourced from the The <a href="https://www.ngdc.noaa.gov/nndc/servlet/ShowDatasets?dataset=102557&search_look=50&display_look=50">Significant Volcanic Eruption Database</a> is a global listing of over 500 significant eruptions.{/ref}</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Estimates of volcanic eruptions are available dating back as early as 1750 BCE, however, the data completeness for long historic events will be much lower than in the recent past.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/significant-volcanic-eruptions"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":4} --> <h4>Deaths from volcanic eruptions</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>In the visualization we see the number of deaths from significant volcanic eruptions across the world. Using the timeline on the map we can see the frequency of volcanic activity deaths over time. <br><br>If we look at deaths over the past century we see several high-impact events: the <a href="https://en.wikipedia.org/wiki/Armero_tragedy">Nevado del Ruiz eruption</a> in Colombia in 1985; the Mount Pelée eruption in Martinique in 1902; and <a href="https://en.wikipedia.org/wiki/1883_eruption_of_Krakatoa">1883 eruption of Krakatoa</a> in Indonesia.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/deaths-from-volcanic-eruptions"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":3} --> <h3>Landslides</h3> <!-- /wp:heading --> <!-- wp:paragraph --> <p>This visualization – sourced from the NASA Socioeconomic Data And Applications Center (SEDAC) – shows the distribution of mortality risk from landslides across the world.<br><br>As we would expect, the risks of landslides are much greater close to highly mountainous regions with dense neighbouring populations. This makes the mortality risk highest across the Andes region in South America, and the Himalayas across Asia.</p> <!-- /wp:paragraph --> <!-- wp:image {"align":"center","id":4331,"linkDestination":"custom"} --> <div class="wp-block-image"><figure class="aligncenter"><a href="http://ourworldindata.org/app/uploads/2014/06/ourworldindata_global-landslide-mortality-risk-distribution-–-sedac-nasa0.png"><img src="http://ourworldindata.org/app/uploads/2014/06/ourworldindata_global-landslide-mortality-risk-distribution-–-sedac-nasa0-712x550.png" alt="Global Landslide Mortality Risk Distribution – SEDAC (NASA)0" class="wp-image-4331"/></a><figcaption>Global landslide mortality risk distribution – SEDAC (NASA){ref}<br> This is from the NASA Socioeconomic Data And Applications Center (SEDAC) hosted by the Center for International Earth Science Information Network (CIESIN) at Columbia University. This map is online at their website <a href="http://sedac.ciesin.columbia.edu/data/set/ndh-landslide-mortality-risks-distribution/maps">here</a>.<br> This document is licensed under a <a href="http://creativecommons.org/licenses/by/3.0/">Creative Commons 3.0 Attribution License</a>.{/ref}</figcaption></figure></div> <!-- /wp:image --> <!-- wp:heading {"level":3} --> <h3>Famines & Droughts</h3> <!-- /wp:heading --> <!-- wp:paragraph --> <p>We cover the history of Famines in detail in our dedicated entry <a href="https://ourworldindata.org/famines"><strong>here</strong></a>. For this research we assembled a new global dataset on famines from the 1860s until 2016.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>In the visualization shown here we see trends in drought severity in the United States. Given is the annual data of drought severity, plus the 9-year average.<br><br>This is measured by the The Palmer Drought Severity Index: the average moisture conditions observed between 1931 and 1990 at a given location is given an index value of zero. A positive value means conditions are wetter than average, while a negative value is drier than average. A value between -2 and -3 indicates moderate drought, -3 to -4 is severe drought, and -4 or below indicates extreme drought.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/drought-severity-index-us"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":3} --> <h3>Hurricanes, Tornados, and Cyclones</h3> <!-- /wp:heading --> <!-- wp:heading {"level":4} --> <h4>Long-term trends in deaths from US weather events</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>Trends in the US provide some of the most complete data on impacts and deaths from weather events over time.<br><br>This chart shows death rates from lightning and other weather events in the United States over time. Death rates are given as the number of deaths per million individuals. Over this period, we see that on average each has seen a significant decline in death rates. This is primarily the result of improved infrastructure, predicted and response systems to disaster events.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/fatality-rates-in-the-us-due-to-weather-events" width="300" height="150"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":4} --> <h4>Intensity of North Atlantic Hurricanes</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>A key metric for assessing hurricane severity is their intensity, and the power they carry.<br><br>The visualizations here use two metrics to define this: the accumulated cyclone energy (ACE), an index that measures the activity of a cyclone season; and the power dissipation index of cyclones.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/ace-north-atlantic-hurricanes"></iframe></figure> <!-- /wp:html --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/cyclone-power-dissipation-index"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":3} --> <h3>Extreme precipitation and flooding</h3> <!-- /wp:heading --> <!-- wp:heading {"level":4} --> <h4>Precipitation anomalies</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>In the visualization shown we see the global precipitation anomaly each year; trends in the US-specific anomaly can be found <a href="https://ourworldindata.org/grapher/precipitation-anomaly">here</a>. </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>This precipitation anomaly is measured relative to the century average from 1901 to 2000. Positive values indicate a wetter year than normal; negative values indicate a drier year.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Also shown is US-specific data on the share of land area which experiences unusually high precipitation in any given year. </p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/global-precipitation-anomaly"></iframe></figure> <!-- /wp:html --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/unusually-high-precipitation-usa"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":4} --> <h4>Precipitation extremes</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>We can look at precipitation anomalies over the course of year, however, flooding events are often caused by intense rainfall over much shorter periods. Flooding events tend to occur when there is extremely high rainfall over the course of hours or days.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>The visualization here shows the extent of extreme one-day precipitation in the US. What we see is a general upwards trend in the extent of extreme rainfall in recent decades.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/extreme-one-day-precipitation-usa"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":3} --> <h3>Extreme Temperature (Heat & Cold)</h3> <!-- /wp:heading --> <!-- wp:paragraph --> <p>Extreme temperature risks to human health and mortality can result from both exposure to extreme heat and cold.</p> <!-- /wp:paragraph --> <!-- wp:heading {"level":4} --> <h4>Heatwaves and high temperatures</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>In the visualizations shown here we see long-term data on heatwaves and unusually high temperatures in the United States.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Overall we see there is significant year-to-year variability in the extent of heatwave events. What stands out over the past century of data was the <a href="https://en.wikipedia.org/wiki/1936_North_American_heat_wave">1936 North American heatwave</a> – one of the most extreme heat wave events in modern history, which coincided with the Great Depression and Dust Bowl of the 1930s.<br><br>When we look at the trajectory of unusually high summer temperatures over time (defined as 'unusually high' in the context of historical records) we see an upward trend in recent decades.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/heat-wave-index-usa"></iframe></figure> <!-- /wp:html --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/high-summer-temp-usa"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":4} --> <h4>Cold temperatures</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>Whilst we often focus on heatwave and warm temperatures in relation to weather extremes, extremely low temperatures can often have a high toll on human health and mortality. <br><br>In the visualization here we show trends in the share of US land area experiencing unusually low winter temperatures. In recent years there appears to have been a declining trend in the extent of the US experiencing particularly cold winters.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/low-winter-temps-usa"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":3} --> <h3>Wildfires</h3> <!-- /wp:heading --> <!-- wp:heading {"level":4} --> <h4>US Wildfires</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>How are the frequency and extent of wildfires in the United States changing over time?</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>In the charts below we provide three overviews: the number of wildfires, the total acres burned, and the average acres burned per wildfire. This data is shown from 1983 onwards, when comparable data recording began.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Over the past 30-35 years we notice three general trends in the charts below (although there is significant year-to-year variability):</p> <!-- /wp:paragraph --> <!-- wp:list --> <ul><li>on average, the annual number of wildfires has not changed much;</li><li>on average, the total acres burned has increased from the 1980s and 1990s into the 21st century;</li><li>the combination of these two factors suggest that the average acres burned <em>per wildfire</em> has increased.</li></ul> <!-- /wp:list --> <!-- wp:paragraph --> <p>There has been significant media coverage of the long-run statistics of US wildfires reported by the National Interagency Fire Center (NIFC). The original statistics are available back to the year 1926. When we look at this long-term series it suggests there has been a significant decline in acres burned over the past century. However, the NIFC explicitly state:</p> <!-- /wp:paragraph --> <!-- wp:quote --> <blockquote class="wp-block-quote"><p>Prior to 1983, sources of these figures are not known, or cannot be confirmed, and were not derived from the current situation reporting process. As a result the figures prior to 1983 should not be compared to later data.</p></blockquote> <!-- /wp:quote --> <!-- wp:paragraph --> <p>Representatives from the NIFC have again confirmed (see the Carbon Brief's coverage <strong><a href="https://www.carbonbrief.org/factcheck-how-global-warming-has-increased-us-wildfires" target="_blank" rel="noopener noreferrer">here</a></strong>) that these historic statistics are not comparable to those since 1983. The lack of reliable methods of measurement and reporting mean some historic statistics may in fact be double or triple-counted in national statistics.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>This means we cannot compare the recent data below with old, historic records. But it also doesn't confirm that acres burned today are higher than the first half of the 20th century. Historically, fires were an <a rel="noopener noreferrer" href="https://www.fs.fed.us/research/sustain/docs/national-reports/2003/data/documents/Indicator%2015/Indicator%2015.pdf" target="_blank">often-used method</a> of clearing land for agriculture, for example. It's not implausible to expect that wildfires of the past may have been larger than today but the available data is not reliable enough to confirm this.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/wildfire-numbers-usa"></iframe></figure> <!-- /wp:html --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/acres-burned-usa"></iframe></figure> <!-- /wp:html --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/acres-burned-per-wildfire-usa"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":3} --> <h3>Lightning</h3> <!-- /wp:heading --> <!-- wp:heading {"level":4} --> <h4>Long-term trends in US lightning strikes</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>This chart shows the declining death rate due to lightning strikes in the US.<br><br>In the first decade of the 20th century the average annual rate of deaths was 4.5 per million people in the US. In the first 15 years of the 21st century the death rate had declined to an average of 0.12 deaths per million. This is a 37-fold reduction in the likelihood of being killed by lightning in the US.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/fatality-rates-due-to-lightning-in-the-us" width="300" height="150"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":4} --> <h4>Lightning strikes across the world</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>The map here shows the distribution of lightning strikes across the world. This is given as the lightning strike density – the average strikes per square kilometer each year. <br><br>In particular we see the high frequency of strikes across the Equatorial regions, especially across central Africa.</p> <!-- /wp:paragraph --> <!-- wp:image {"align":"center","id":4334,"linkDestination":"custom"} --> <div class="wp-block-image"><figure class="aligncenter"><a href="http://ourworldindata.org/app/uploads/2014/06/ourworldindata_world-map-of-frequency-of-lightning-strikes-–-wikipedia-nasa-data0.png"><img src="http://ourworldindata.org/app/uploads/2014/06/ourworldindata_world-map-of-frequency-of-lightning-strikes-–-wikipedia-nasa-data0-750x465.png" alt="World Map of Frequency of lightning strikes – Wikipedia [NASA data]0" class="wp-image-4334"/></a><figcaption>World map of frequency of lightning strikes – Wikipedia (NASA data){ref}<br> This map is taken from <a href="http://en.wikipedia.org/wiki/File:Global_lightning_strikes.png">Wikipedia here</a>.<br> This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unreported license.{/ref}</figcaption></figure></div> <!-- /wp:image --> <!-- wp:heading --> <h2>Economic costs</h2> <!-- /wp:heading --> <!-- wp:heading {"level":3} --> <h3>Global disaster costs</h3> <!-- /wp:heading --> <!-- wp:paragraph --> <p>Natural disasters not only have devastating impacts in terms of the loss of human life, but can also cause severe destruction with economic costs.<br><br>When we look at global economic costs over time in <a href="https://ourworldindata.org/grapher/damage-costs-from-natural-disasters">absolute terms</a> we tend to see rising costs. But, importantly, the world – and most countries – have also <a href="https://ourworldindata.org/economic-growth">gotten richer</a>. Global gross domestic product has increased <a href="https://ourworldindata.org/grapher/world-gdp-over-the-last-two-millennia?time=1900..2015">more than four-fold</a> since 1970. We might therefore expect that for any given disaster, the absolute economic costs could be higher than in the past. </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>A more appropriate metric to compare economic costs over time is to look at them in relation to GDP. This is the <a href="https://sdg-tracker.org/cities#11.5.2">indicator adopted</a> by all countries as part of the UN Sustainable Development Goals to monitor progress on resilience to disaster costs.<br><br>In the chart, we see global direct disaster losses given as a share of GDP.</p> <!-- /wp:paragraph --> <!-- wp:html --> <iframe src="https://ourworldindata.org/explorers/natural-disasters?facet=none&country=~OWID_WRL&Disaster+Type=All+disasters&Impact=Economic+damages+%28%25+GDP%29&Timespan=Annual&Per+capita=false&hideControls=true" loading="lazy" style="width: 100%; height: 600px; border: 0px none;"></iframe> <!-- /wp:html --> <!-- wp:heading {"level":3} --> <h3>Disaster costs by country</h3> <!-- /wp:heading --> <!-- wp:paragraph --> <p>Since economic losses from disasters in relation to GDP is the <a href="https://sdg-tracker.org/cities#11.5.2">indicator adopted</a> by all countries within the UN Sustainable Development Goals, this data is also now reported for each country.<br><br>The map shows direct disaster costs for each country as a share of its GDP. Here we see large variations by country – a 100-fold difference ranging from less than 0.05% to 5%. This data can be found in absolute terms <a href="https://ourworldindata.org/grapher/direct-disaster-economic-loss?tab=chart"><strong>here</strong></a>. </p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe src="https://ourworldindata.org/grapher/direct-disaster-loss-as-a-share-of-gdp"></iframe></figure> <!-- /wp:html --> <!-- wp:heading --> <h2>Not all deaths are equal: How many deaths make a natural disaster newsworthy?</h2> <!-- /wp:heading --> <!-- wp-block-tombstone 26553 --> <!-- wp:paragraph --> <p>How many deaths does it take for a natural disaster to be newsworthy? </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>This is a question researchers Thomas Eisensee and David Strömberg asked in a 2007 study.{ref}Eisensee, T., & Strömberg, D. (2007). News droughts, news floods, and US disaster relief. The Quarterly Journal of Economics, 122(2), 693-728. Online here: <a rel="noreferrer noopener" href="http://perseus.iies.su.se/~dstro/wpdisasters.pdf" target="_blank">http://perseus.iies.su.se/~dstro/wpdisasters.pdf</a>{/ref} </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>The two authors found that for every person killed by a volcano, nearly 40,000 people have to die of a food shortage to get the same probability of coverage in US televised news.{ref}As is mentioned below in more detail, this figure is controlled for other factors (i.e. country, year, month, and number of people affected).{/ref} </p> <!-- /wp:paragraph --> <!-- wp:heading {"level":4} --> <h4>The type of disaster matters</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>In other words, the <em>type</em> of disaster matters to how newsworthy networks find it to be. The visualizations show the extent of this observed "news effect". The chart shows the proportion of each type of disaster that receives news coverage, and the second shows the "casualties ratio", which tells us—all else equal—how many casualties would make media coverage equally likely for each type of disaster.</p> <!-- /wp:paragraph --> <!-- wp:html --> <iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/news-coverage-of-disasters" width="300" height="150"></iframe> <!-- /wp:html --> <!-- wp:html --> <iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/how-many-deaths-does-it-take-for-a-disaster-to-receive-news-coverage" width="300" height="150"></iframe> <!-- /wp:html --> <!-- wp:paragraph --> <p>The study, which primarily set out to examine mass media’s influence on US natural disaster response, considered over 5,000 natural disasters{ref}The study used a database compiled by the Centre for Research on the Epidemiology of Disasters, where an event qualifies as a disaster if at least one of the following criteria are fulfilled: ten or more people are reported, killed; 100 or more people are reported affected, injured, and/or homeless; there has been a declaration of a state of emergency; or there has been a call for international assistance.{/ref} and 700,000 news stories from the major US national broadcast networks (ABC, CBS, NBC, and CNN) between 1968 and 2002. </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>The findings tells us, among other important things, that networks tend to be selective in their coverage and attention is not reflecting the severity and number of people killed or affected by a natural disaster.<br></p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Instead of considering the objective damage caused by natural disasters, networks tend to look for disasters that are “rife with drama”, as one New York Times article put it{ref}Eisensee, T., & Strömberg, D. (2007). News droughts, news floods, and US disaster relief. The Quarterly Journal of Economics, 122(2), 693-728. Online here: <a rel="noreferrer noopener" href="http://perseus.iies.su.se/~dstro/wpdisasters.pdf" target="_blank">http://perseus.iies.su.se/~dstro/wpdisasters.pdf</a>{/ref}—hurricanes, tornadoes, forest fires, earthquakes all make for splashy headlines and captivating visuals. </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Thanks to this selectivity, less "spectacular" but often times more deadly natural disasters tend to get passed over. <a href="https://ourworldindata.org/famines/">Food shortages</a>, for example, result in the most casualties and affect the most people per incident{ref}Based on the study’s analysis of data compiled by the Centre for Research on the Epidemiology of Disasters.{/ref} but their onset is more gradual than that of a volcanic explosion or sudden earthquake. As a result, food shortages are covered only 3% of the time while a comparatively indulgent 30% of earthquakes and volcanic events get their time in the spotlight. </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Additionally, when the researchers “hold all else equal” by controlling for factors such as yearly trends in news intensity and the number of people killed and affected, the difference in coverage is even more pronounced.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>This bias for the spectacular is not only unfair and misleading, but also has the potential to misallocate attention and aid. Disasters that happen in an instant leave little time for preventative intervention. On the other hand, the gradual disasters that tend to affect more lives build up slowly, allowing more time for preventative measures to be taken. However, in a Catch-22 situation, the gradual nature of these calamities is also what prevents them from garnering the media attention they deserve.</p> <!-- /wp:paragraph --> <!-- wp:heading {"level":4} --> <h4>And the location of the disaster matters too</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>There are other biases, too. Eisensee and Strömberg found that while television networks cover more than 15% of the disasters in Europe and South Central America, they show less than 5% of the disasters in Africa and the Pacific. Disasters in Africa tend to get less coverage than ones in Asia because they are less "spectacular", with more droughts and food shortages occurring there relative to Asia. </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>However, after controlling for disaster type, along with other factors such as the number killed and the timing of the news, there is no significant difference between coverage of African and Asian disasters. Instead, a huge difference emerges between coverage of Africa, Asia, and the Pacific on the one hand, and Europe and South and Central America, on the other. </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>According to the researchers’ estimates, 45 times as many people would have to die in an African disaster for it to garner the same media attention as a European one. The two visualizations show the extent of this bias.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>ABC News’s slogan is “See the whole picture” and CNN’s is “Go there”, but good follow-up questions might be: what exactly, and where?<br></p> <!-- /wp:paragraph --> <!-- wp:html --> <iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/news-coverage-of-disasters-by-continent" width="300" height="150"></iframe> <!-- /wp:html --> <!-- wp:html --> <iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/how-many-deaths-does-it-take-for-a-disaster-in-different-continents-to-receive-news-coverage" width="300" height="150"></iframe> <!-- /wp:html --> <!-- wp:heading --> <h2>Link between poverty and deaths from natural disasters</h2> <!-- /wp:heading --> <!-- wp:paragraph --> <p>One of the major successes over the past century has been the dramatic <a href="https://ourworldindata.org/natural-disasters#number-of-deaths-from-natural-disasters">decline in global deaths</a> from natural disasters – this is despite the fact that the <a href="https://owid.cloud/world-population-growth">human population</a> has increased rapidly over this period.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Behind this improvement has been the improvement in living standards; access to and development of resilient infrastructure; and effective response systems. These factors have been driven by an <a href="https://owid.cloud/economic-growth">increase in incomes</a> across the world.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>What remains true today is that populations in low-income countries – those where a large percentage of the population still live in <a href="https://owid.cloud/extreme-poverty">extreme poverty</a>, or score low on the <a href="https://ourworldindata.org/human-development-index/">Human Development Index</a> – are more vulnerable to the effects of natural disasters. </p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>We see this effect in the visualization shown. This chart shows the death rates from natural disasters – the number of deaths per 100,000 population – of countries grouped by their <a href="http://www.healthdata.org/taxonomy/glossary/socio-demographic-index-sdi">socio-demographic index</a> (SDI). SDI is a metric of development, where low-SDI denotes countries with low standards of living.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>What we see is that the large spikes in death rates occur almost exclusively for countries with a low or low-middle SDI. Highly developed countries are much more resilient to disaster events and therefore have a consistently low death rate from natural disasters.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Note that this does not mean low-income countries have high death tolls from disasters year-to-year: the data here shows that in most years they also have very low death rates. But when low-frequency, high-impact events do occur they are particularly vulnerable to its effects.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Overall development, poverty alleviation, and knowledge-sharing of how to increase resilience to natural disasters will therefore be key to reducing the toll of disasters in the decades to come.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe src="https://ourworldindata.org/grapher/death-rates-natural-disasters"></iframe></figure> <!-- /wp:html --> <!-- wp:heading --> <h2>Definitions & Metrics</h2> <!-- /wp:heading --> <!-- wp:heading {"level":4} --> <h4>Hurricanes, cyclones & typhoons</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>There are multiple terms used to describe extreme weather events: hurricanes, typhoons, cyclones and tornadoes. What is the difference between these terms, and how are they defined?</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>The terms <strong>hurricane</strong>, <strong>cyclone</strong> and <strong>typhoon</strong> all refer to the same thing; they can be used interchangeably. Hurricanes and typhoons are both described as the weather phenomenon 'tropical cyclone'. A tropical cyclone is a weather event which originates over tropical or subtropical waters and results in a rotating, organized system of clouds and thunderstorms. Its circulation patterns should be closed and low-level.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>The choice of terminology is location-specific and depends on where the storm originates. The term <em>hurricane</em> is used to describe a tropical cyclone which originates in the North Atlantic, central North Pacific, and eastern North Pacific. When it originates in the Northwest Pacific, we call it <em>typhoon</em>. In the South Pacific and Indian Ocean the general term <em>tropical cyclone</em> is used.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>In other words, <a href="https://oceanservice.noaa.gov/facts/cyclone.html" target="_blank" rel="noopener noreferrer">the only difference</a> between a hurricane and typhoon is where it occurs.</p> <!-- /wp:paragraph --> <!-- wp:heading {"level":4} --> <h4>When does a storm become a hurricane?</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>The characteristics of a hurricane are described in detail at the <a href="https://www.nasa.gov/audience/forstudents/k-4/stories/nasa-knows/what-are-hurricanes-k4.html" target="_blank" rel="noopener noreferrer">NASA website</a>.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>A hurricane evolves from a tropical disturbance or storm based on a threshold of wind speed.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>A tropical disturbance arises over warm ocean waters. It can grow into a tropical depression which is an area of rotating thunderstorms with winds up to 62 kilometres (38 miles) per hour. From there, a depression evolves into a tropical storm if its wind speed reaches 63 km/hr (39 mph).</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Finally a hurricane is formed when a tropical storm reaches a wind speed of 119 km/hr (74 mph).</p> <!-- /wp:paragraph --> <!-- wp:heading {"level":4} --> <h4>Difference between hurricanes and tornadoes</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>But, hurricanes/typhoons/cyclones <em>are</em> distinctly different from tornadoes.</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>Whilst hurricanes and tornadoes have a characteristic circulatory wind patterns, they are very different weather systems. The main <a href="https://pmm.nasa.gov/resources/faq/what-difference-between-tornado-and-hurricane" target="_blank" rel="noopener noreferrer">difference between the systems</a> is scale (tornadoes are small-scale circulatory systems; hurricanes are large-scale). These differences are highlighted in the table below:</p> <!-- /wp:paragraph --> <!-- wp:shortcode --> <table><thead><tr><th scope="col" colSpan="1"></th><th scope="col" colSpan="1">Hurricanes/typhoons</th><th scope="col" colSpan="1">Tornadoes</th></tr></thead><tbody><tr><td colSpan="1" rowspan="1"><strong>Diameter</td><td colSpan="1" rowspan="1">60 to 1000s miles</td><td colSpan="1" rowspan="1">Up to 1 - 1.5 miles (usually less)</td></tr><tr><td colSpan="1" rowspan="1"><strong>Wind speed</td><td colSpan="1" rowspan="1">74 to 200 mph</td><td colSpan="1" rowspan="1">40 to 300 mph</td></tr><tr><td colSpan="1" rowspan="1"><strong>Lifetime</td><td colSpan="1" rowspan="1">Long (usually days)</td><td colSpan="1" rowspan="1">Very short (usually minutes)</td></tr><tr><td colSpan="1" rowspan="1"><strong>Travel distance</td><td colSpan="1" rowspan="1">Long (100 metres to 100 miles)</td><td colSpan="1" rowspan="1">Short distances</td></tr><tr><td colSpan="1" rowspan="1"><strong>Environmental impact</td><td colSpan="1" rowspan="1">Can have impact on wider environment and atmospheric patterns.</td><td colSpan="1" rowspan="1">Local (although can be very high impact). Little wider impact on atmospheric systems or environment.</td></tr></tbody></table> <!-- /wp:shortcode --> <!-- wp:heading {"level":4} --> <h4>Volcanic Explosivity Index (VEI)</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>The intensity or size of volcanic eruptions are most commonly defined by a metric termed the 'volcanic explosivity index (VEI)'. The VEI is derived based on the erupted mass or deposit of an eruption. The scale for VEI was outlined by Newhall & Self (1982), but is now commonly adopted in geophysical reporting.{ref}Newhall, C.G. and Self, S (1982). The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism.<em>Jour Geophys Res (Oceans & Atmospheres)</em>, 87:1231-1238. Available at: <a href="https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC087iC02p01231">https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC087iC02p01231</a>.{/ref}</p> <!-- /wp:paragraph --> <!-- wp:paragraph --> <p>The table below provides a summary (from the <a href="https://www.ngdc.noaa.gov/nndc/DescribeField.jsp?dataset=102557&s=77&field_name=HAZ.VOLCANO_EVENT.VEI" target="_blank" rel="noopener noreferrer">NOAA's National Geophysical Data Center</a>) of the characteristics of eruptions of different VEI values. A 'Significant Volcanic Eruption' is often defined as an eruption with a VEI value of 6 or greater. Historic eruptions that were definitely explosive, but carry no other descriptive information are assigned a default VEI of 2.</p> <!-- /wp:paragraph --> <!-- wp:shortcode --> <table><thead><tr><th scope="col" colSpan="1">Volcanic Explosivity Index (VEI)</th><th scope="col" colSpan="1">General description</th><th scope="col" colSpan="1">Cloud Column Height (km)</th><th scope="col" colSpan="1">Volume (m³)</th><th scope="col" colSpan="1">Qualititative Description</th><th scope="col" colSpan="1">Classification</th><th scope="col" colSpan="1">How frequent?</th><th scope="col" colSpan="1">Example</th></tr></thead><tbody><tr><td colSpan="1" rowspan="1">0</td><td colSpan="1" rowspan="1">Non-explosive</td><td colSpan="1" rowspan="1">< 0.1 km</td><td colSpan="1" rowspan="1">1x10⁴</td><td colSpan="1" rowspan="1">Gentle</td><td colSpan="1" rowspan="1">Hawaiian</td><td colSpan="1" rowspan="1">daily</td><td colSpan="1" rowspan="1">Kilauea</td></tr><tr><td colSpan="1" rowspan="1">1</td><td colSpan="1" rowspan="1">Small</td><td colSpan="1" rowspan="1">0.1 - 1 km</td><td colSpan="1" rowspan="1">1x10⁶</td><td colSpan="1" rowspan="1">Effusive</td><td colSpan="1" rowspan="1">Haw/Strombolian</td><td colSpan="1" rowspan="1">daily</td><td colSpan="1" rowspan="1">Stromboli</td></tr><tr><td colSpan="1" rowspan="1">2</td><td colSpan="1" rowspan="1">Moderate</td><td colSpan="1" rowspan="1">1 - 5 km</td><td colSpan="1" rowspan="1">1x10⁷</td><td colSpan="1" rowspan="1">Explosive</td><td colSpan="1" rowspan="1">Strom/Vulcanian</td><td colSpan="1" rowspan="1">weekly</td><td colSpan="1" rowspan="1">Galeras, 1992</td></tr><tr><td colSpan="1" rowspan="1">3</td><td colSpan="1" rowspan="1">Moderate-Large</td><td colSpan="1" rowspan="1">3 - 15 km</td><td colSpan="1" rowspan="1">1x10⁸</td><td colSpan="1" rowspan="1">Explosive</td><td colSpan="1" rowspan="1">Vulcanian</td><td colSpan="1" rowspan="1">annually</td><td colSpan="1" rowspan="1">Ruiz, 1985</td></tr><tr><td colSpan="1" rowspan="1">4</td><td colSpan="1" rowspan="1">Large</td><td colSpan="1" rowspan="1">10 - 25 km</td><td colSpan="1" rowspan="1">1x10⁹</td><td colSpan="1" rowspan="1">Explosive</td><td colSpan="1" rowspan="1">Vulc/Plinian</td><td colSpan="1" rowspan="1">10's of years</td><td colSpan="1" rowspan="1">Galunggung, 1982</td></tr><tr><td colSpan="1" rowspan="1">5</td><td colSpan="1" rowspan="1">Very Large</td><td colSpan="1" rowspan="1">> 25 km</td><td colSpan="1" rowspan="1">1x10¹⁰</td><td colSpan="1" rowspan="1">Cataclysmic</td><td colSpan="1" rowspan="1">Plinian</td><td colSpan="1" rowspan="1">100's of years</td><td colSpan="1" rowspan="1">St. Helens, 1981</td></tr><tr><td colSpan="1" rowspan="1">6</td><td colSpan="1" rowspan="1"></td><td colSpan="1" rowspan="1">> 25 km</td><td colSpan="1" rowspan="1">1x10¹¹</td><td colSpan="1" rowspan="1">Paroxysmal</td><td colSpan="1" rowspan="1">Plin/Ultra-Plinian</td><td colSpan="1" rowspan="1">100's of years</td><td colSpan="1" rowspan="1">Krakatau, 1883</td></tr><tr><td colSpan="1" rowspan="1">7</td><td colSpan="1" rowspan="1"></td><td colSpan="1" rowspan="1">> 25 km</td><td colSpan="1" rowspan="1">1x10¹²</td><td colSpan="1" rowspan="1">Colossal</td><td colSpan="1" rowspan="1">Ultra-Plinian</td><td colSpan="1" rowspan="1">1000's of years</td><td colSpan="1" rowspan="1">Tambora, 1815</td></tr><tr><td colSpan="1" rowspan="1">8</td><td colSpan="1" rowspan="1"></td><td colSpan="1" rowspan="1">> 25 km</td><td colSpan="1" rowspan="1">>1x10¹²</td><td colSpan="1" rowspan="1">Colossal</td><td colSpan="1" rowspan="1">Ultra-Plinian</td><td colSpan="1" rowspan="1">10,000's of years</td><td colSpan="1" rowspan="1">Yellowstone, 2 Ma</td></tr></tbody></table> <!-- /wp:shortcode --> <!-- wp:heading --> <h2>Data Quality</h2> <!-- /wp:heading --> <!-- wp:heading {"level":4} --> <h4>Number of reported disaster events</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>A key issue of data quality is the consistency of even reporting over time. For long-term trends in natural disaster events we know that reporting and recording of events today is much more advanced and complete than in the past. This can lead to significant underreporting or uncertainty of events in the distant past.<br><br>In the chart here we show data on the number of <em>reported</em> natural disasters over time. <br><br>This change over time can be influenced by a number of factors, namely the increased coverage of reporting over time. The increase over time is therefore not directly reflective of the <em>actual</em> trend in disaster events.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/number-of-natural-disaster-events" width="300" height="150"></iframe></figure> <!-- /wp:html --> <!-- wp:heading {"level":4} --> <h4>Number of reported disasters by type</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>This same data is shown here as the number of <em>reported</em> disaster events by type. Again, the incompleteness of historical data can lead to significant underreporting in the past. The increase over time is therefore not directly reflective of the <em>actual</em> trend in disaster events.</p> <!-- /wp:paragraph --> <!-- wp:html --> <figure><iframe style="width: 100%; height: 600px; border: 0px none;" src="https://ourworldindata.org/grapher/natural-disasters-by-type" width="300" height="150"></iframe></figure> <!-- /wp:html --> <!-- wp:heading --> <h2>Data Sources</h2> <!-- /wp:heading --> <!-- wp:paragraph --> <p>Wikipedia has several lists of disasters, and an overview of these lists can be found at <a href="http://en.wikipedia.org/wiki/Lists_of_disasters">List of Disasters</a>.</p> <!-- /wp:paragraph --> <!-- wp:heading {"level":4} --> <h4>Deaths from natural disasters</h4> <!-- /wp:heading --> <!-- wp:heading {"level":5} --> <h5>Institute for Health Metrics and Evaluation (IHME), Global Burden of Disease</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data:</strong> IHME provides data on deaths and death rates from natural disasters</li><li><strong>Geographical coverage:</strong> Global – country and regional level</li><li><strong>Time span:</strong> 1990 onwards</li><li><strong>Available at:</strong> <a href="http://www.emdat.be/">IHME, GBD</a></li></ul> <!-- /wp:list --> <!-- wp:heading {"level":4} --> <h4>Multiple Types of Disasters</h4> <!-- /wp:heading --> <!-- wp:heading {"level":5} --> <h5>EM-DAT – The International Disaster Database</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data:</strong> EM-DAT is a catalogue of disasters listing detailed information on natural disasters: droughts (famines), earthquakes, epidemics, extreme temperatures, floods, insect infestations, mass movement (dry & wet), storms, volcanos, and wildfires. There is also a data section on technological disasters.</li><li><strong>Geographical coverage:</strong> Global – country and regional level (primarily cross-country data set, but also contains the name of the sub-national regions affected by disasters)</li><li><strong>Time span:</strong> 1900 onwards</li><li><strong>Available at:</strong> <a href="http://www.emdat.be">EM-DAT</a></li><li><em>Raw data has to be requested but the <a href="http://web.archive.org/web/20150829055006/http://www.emdat.be:80/disaster-trends">section on disaster trends</a> encompasses a number of visualizations (time series and maps).<br></em></li><li><em>EM-DAT is maintained by the <a href="https://web.archive.org/web/20190922043847/https://www.cred.be/">Center for Research on the Epidemiology of Disasters (CRED)</a><br></em></li><li><em>EM-DAT data on the annual number of deaths and number of affected by drought, epidemics, earthquakes, extreme temperature, flood, storm, tsunami, plane crash by country is available at <strong>Gapminder</strong>.</em></li></ul> <!-- /wp:list --> <!-- wp:heading {"level":5} --> <h5>Earth Observatory by NASA – Natural Hazards</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data:</strong> Up to date information and satellite images on fires, storms, floods, volcanoes, earthquakes, and droughts</li><li><strong>Geographical coverage:</strong> Global</li><li><strong>Time span:</strong> Recent years – very up to date</li><li><strong>Available at:</strong> <a href="http://earthobservatory.nasa.gov/NaturalHazards/">earthobservatory.nasa.gov/NaturalHazards</a></li></ul> <!-- /wp:list --> <!-- wp:heading {"level":5} --> <h5>Natural Hazards Data – U.S. National Oceanic and Atmospheric Administration's National Geophysical Data Center (NGDC)</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data:</strong> Data and maps on many natural hazards including cyclones, tsunamis, earthquakes, volcanoes, and wildfires. It includes the 'Global Significant Earthquake Database, 2150 B.C. to present' (5500 events) and 'The Significant Volcanic Eruption Database' and ‘Global Historical Tsunami Events and Runups’ among many other datasets.</li><li><strong>Geographical coverage:</strong> Global – exact location</li><li><strong>Time span:</strong> Millennia</li><li><strong>Available at:</strong> Online <a href="http://www.ngdc.noaa.gov/hazard/hazards.shtml">here</a></li><li class="no-bullet"><em>Download maps as pdf or ArcIMS interactive maps, and data in tab-delimited data files or html.</em></li></ul> <!-- /wp:list --> <!-- wp:heading {"level":5} --> <h5>Global Risk Data Platform</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data:</strong> Spatial data on tropical cyclones and related storm surges, drought, earthquakes, biomass fires, floods, landslides, tsunamis and volcanic eruptions.</li><li><strong>Geographical coverage:</strong> Global</li><li><strong>Time span:</strong> Recent past</li><li><strong>Available at:</strong> The website can be found <a href="http://preview.grid.unep.ch">here</a>.</li><li class="no-bullet"><em>Users can visualize, download or extract data on past hazardous events, human & economical hazard exposure and risk from natural hazards.</em></li></ul> <!-- /wp:list --> <!-- wp:heading {"level":5} --> <h5>Socioeconomic Data and Applications Center (SEDAC) – by NASA</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data: </strong>Maps of natural hazards</li><li><strong>Geographical coverage: </strong>Global</li><li><strong>Time span: </strong>Recent years</li><li><strong>Available at: </strong>Online <a href="http://sedac.ciesin.columbia.edu/data/sets/browse?facets=theme:hazards">here at the SEDAC website at Colombia University</a><strong><br></strong></li></ul> <!-- /wp:list --> <!-- wp:heading {"level":5} --> <h5>Center for Hazards & Risk Research at Columbia University</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Hotspots:</strong> Risk levels calculated by combining hazard exposure with historical vulnerability for two indicators of elements at risk—gridded population and Gross Domestic Product (GDP) per unit area—for six major natural hazards: earthquakes, volcanoes, landslides, floods, drought, and cyclones</li><li><strong>Natural disaster profiles:</strong> Profiles for 13 countries provide information on sub-national areas at risk from natural hazards including cyclones, droughts, earthquakes, volcanoes, floods, and landslides.</li><li><strong>Geographical coverage: </strong>Global for hotspots data</li><li><strong>Time span: </strong>Recent past</li><li><strong>Available at: </strong>Online <a href="http://www.ldeo.columbia.edu/chrr/research/profiles/">here</a><strong><br></strong></li></ul> <!-- /wp:list --> <!-- wp:heading {"level":4} --> <h4> Earthquakes</h4> <!-- /wp:heading --> <!-- wp:heading {"level":5} --> <h5>Global Earthquake Model (GEM)</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data:</strong> GEM Global Historical Earthquake Catalogue (1000-1900) and the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009)</li><li><strong>Geographical coverage:</strong>Global</li><li><strong>Time span: </strong>1000 onwards</li><li><strong>Available at: </strong>Online <a href="http://web.archive.org/web/20130106062157/http://www.globalquakemodel.org:80/risk-global-components/exposure-database">here</a><strong><br></strong></li></ul> <!-- /wp:list --> <!-- wp:heading {"level":4} --> <h4>Fire</h4> <!-- /wp:heading --> <!-- wp:heading {"level":5} --> <h5>ATSR World Fire Atlas – by the European Space Agency (ESA)</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data: </strong>Monthly global fire maps</li><li><strong>Geographical coverage: </strong>Global</li><li><strong>Time span:</strong> 1995 onwards</li><li><strong>Available at: </strong>Online at the website of ESA <a href="http://due.esrin.esa.int/page_wfa.php">here</a><strong><br></strong></li></ul> <!-- /wp:list --> <!-- wp:heading {"level":4} --> <h4>Tsunami</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p>The <strong>Center for International Earth Science Information Network</strong> at the Earth Institute at Columbia University publishes data on the <a href="http://www.ciesin.columbia.edu/tsunami2004.html">Population Affected by the Indian Ocean Tsunami</a> <em>(December 2004)</em>.</p> <!-- /wp:paragraph --> <!-- wp:heading {"level":4} --> <h4>Floods</h4> <!-- /wp:heading --> <!-- wp:paragraph --> <p><strong>Wikipedia</strong> has a <a href="http://en.wikipedia.org/wiki/List_of_deadliest_floods">List of Deadliest Floods</a> and a <a href="http://en.wikipedia.org/wiki/List_of_floods">List of Floods</a>.</p> <!-- /wp:paragraph --> <!-- wp:heading {"level":4} --> <h4>Hurricanes</h4> <!-- /wp:heading --> <!-- wp:heading {"level":5} --> <h5>Unisys Data on Hurricanes</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data:</strong> Data on the track of the storm plus a text-based table of tracking information. The table includes position in latitude and longitude, maximum sustained winds in knots, and central pressure in millibars.</li><li><strong>Geographical coverage:</strong> Atlantic, East Pacific, West Pacific, South Pacific, South Indian, and North Indian</li><li><strong>Time span:</strong> 1851 until now</li><li><strong>Available at:</strong> Online <a href="http://weather.unisys.com/hurricanes">here</a></li><li class="no-bullet"><em><em> This data set was used by Dean Yang (2008) – Coping with Disaster: The Impact of Hurricanes on International Financial Flows, 1970-2002. The B.E. Journal of Economic Analysis & Policy. Volume 8, Issue 1, ISSN (Online) 1935-1682, DOI: 10.2202/1935-1682.1903, June 2008. Online <a href="http://www.degruyter.com/view/j/bejeap.2008.8.1/bejeap.2008.8.1.1903/bejeap.2008.8.1.1903.xml?format=INT">here</a>.</em></em></li></ul> <!-- /wp:list --> <!-- wp:heading {"level":5} --> <h5>National Climatic Data Center (NOAA)</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data:</strong> Data on the track of storms</li><li><strong>Geographical coverage:</strong> Global</li><li><strong>Time span:</strong> 1848 until now</li><li><strong>Available at:</strong> Online at <a href="http://www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data">NOAA here</a></li></ul> <!-- /wp:list --> <!-- wp:heading {"level":4} --> <h4>Volcanoes</h4> <!-- /wp:heading --> <!-- wp:heading {"level":5} --> <h5>National Geophysical Data Center (NGDC)</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data:</strong> Global listing of over 500 significant eruptions which includes information on the latitude, longitude, elevation, type of volcano, and last known eruption.</li><li><strong>Geographical coverage:</strong> Global</li><li><strong>Time span:</strong> 1750BC onwards</li><li><strong>Available at:</strong> Online at the <a href="https://www.ngdc.noaa.gov/nndc/servlet/ShowDatasets?dataset=102557&search_look=50&display_look=50">Significant Volcanic Eruption Database.</a></li></ul> <!-- /wp:list --> <!-- wp:heading {"level":5} --> <h5>Smithsonian Institution's Global Volcanism Program (GVP)</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data:</strong> Complete list of current and past activity for all volcanoes on the planet active during the last 10,000 years. Data includes eruption type, maximum Volcanic Explosivity Index, start and end dates (when known), and the type of evidence for the eruption.</li><li><strong>Geographical coverage:</strong> Global</li><li><strong>Time span:</strong> Past 10,000 years to present day</li><li><strong>Available at:</strong> Online at <a href="http://volcano.si.edu/search_eruption.cfm##">the Volcanoes of the World Database</a></li><li><strong>Full reference:</strong> Global Volcanism Program, 2013. Volcanoes of the World, v. 4.7.3. Venzke, E (ed.). Smithsonian Institution. https://doi.org/10.5479/si.GVP.VOTW4-2013</li></ul> <!-- /wp:list --> <!-- wp:heading {"level":4} --> <h4>Lightning</h4> <!-- /wp:heading --> <!-- wp:heading {"level":5} --> <h5>Lightning Maps</h5> <!-- /wp:heading --> <!-- wp:list --> <ul><li><strong>Data:</strong> Real-time tracking of lightning strikes</li><li><strong>Geographical coverage:</strong> Global</li><li><strong>Time span:</strong> Real-time</li><li><strong>Available at:</strong> Online <a href="http://www.lightningmaps.org/#m=oss;t=3;s=0;o=0;b=;ts=0;">here</a></li></ul> <!-- /wp:list --> | { "id": "wp-4315", "slug": "natural-disasters", "content": { "toc": [], "body": [ { "type": "text", "value": [ { "text": "Natural disasters \u2013 from earthquakes and floods to storms and droughts \u2013 affect millions of people every year. However, we are not defenseless against them, and the global death toll, especially from droughts and floods, has been reduced.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "While natural disasters account for a small fraction of ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/causes-of-death", "children": [ { "text": "all deaths globally", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ", they can have a large impact, especially on vulnerable populations in low-to-middle-income countries with insufficient infrastructure to protect and respond effectively\u200b. Understanding the frequency, intensity, and impact of natural disasters is crucial if we want to be better prepared and protect people\u2019s lives and livelihoods.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "On this page, you will find our complete collection of data, charts, and research on natural disasters and their human and economic costs.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/explorers/natural-disasters?facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL", "type": "chart", "parseErrors": [] }, { "type": "text", "value": [ { "text": "\u2192 ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/explorers/natural-disasters", "children": [ { "text": "Open the Data Explorer", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " in a new tab.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "entry-summary", "items": [ { "slug": "natural-disasters-kill-tens-of-thousands-each-year", "text": "Natural disasters kill on average 45,000 people per year, globally." }, { "slug": "what-share-of-deaths-are-from-natural-disasters", "text": "Globally, disasters were responsible for 0.1% of deaths over the past decade. This was highly variable, ranging from 0.01% to 0.4%." }, { "slug": "natural-disasters-kill-tens-of-thousands-each-year", "text": "Deaths from natural disasters have seen a large decline over the past century \u2013 from, in some years, millions of deaths per year to an average of 60,000 over the past decade." }, { "slug": "number-of-deaths-by-type-of-natural-disaster", "text": "Historically, droughts and floods were the most fatal disaster events. Deaths from these events are now very low \u2013 the most deadly events today tend to be earthquakes." }, { "slug": "link-between-poverty-and-deaths-from-natural-disasters", "text": "Disasters affect those in poverty most heavily: high death tolls tend to be centered in low-to-middle income countries without the infrastructure to protect and respond to events." } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "url": "#all-charts", "children": [ { "text": "See all interactive charts on natural disasters \u2193", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "spanType": "span-bold" } ], "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Natural disasters kill tens of thousands each year", "spanType": "span-simple-text" } ], "type": "heading", "level": 1, "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "type": "text", "value": [ { "text": "The number of deaths from natural disasters can be highly variable from year-to-year; some years pass with very few deaths before a large disaster event claims many lives.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "If we look at the average over the past decade, approximately 45,000 people globally died from natural disasters each year. This represents around 0.1% of global deaths.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "In the visualizations shown here we see the annual variability in the number and share of deaths from natural disasters in recent decades.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "What we see is that in many years, the number of deaths can be very low \u2013 often less than 10,000, and accounting for as low as 0.01% of total deaths. But we also see the devastating impact of shock events: the 1983-85 ", "spanType": "span-simple-text" }, { "url": "https://owid.cloud/famines", "children": [ { "text": "famine", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " and drought in Ethiopia; the ", "spanType": "span-simple-text" }, { "url": "https://en.wikipedia.org/wiki/2004_Indian_Ocean_earthquake_and_tsunami", "children": [ { "text": "2004 Indian Ocean earthquake and tsunami", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": "; ", "spanType": "span-simple-text" }, { "url": "https://en.wikipedia.org/wiki/Cyclone_Nargis", "children": [ { "text": "Cyclone Nargis", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " which struck Myanmar in 2008; and the ", "spanType": "span-simple-text" }, { "url": "https://en.wikipedia.org/wiki/2010_Haiti_earthquake", "children": [ { "text": "2010 Port-au-Prince earthquake", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " in Haiti. All of these events pushed global disasters deaths over 200,000 \u2013 more than 0.4% of deaths in these years.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. We know from historical data that the world has seen a significant reduction in disaster deaths through earlier prediction, more resilient infrastructure, emergency preparedness, and response systems.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "Those at low incomes are often the most vulnerable to disaster events: improving living standards, infrastructure and response systems in these regions will be key to preventing deaths from natural disasters in the coming decades.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/explorers/natural-disasters?time=1978..latest&facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=false&country=~OWID_WRL&hideControls=true", "type": "chart", "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/share-deaths-from-natural-disasters?tab=chart", "type": "chart", "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "What share of deaths are from natural disasters?", "spanType": "span-simple-text" } ], "type": "heading", "level": 1, "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "type": "text", "value": [ { "text": "Globally, over the past decade, natural disasters accounted for an average of 0.1% of total deaths. This was, however, highly variable to high-impact events and ranged from 0.01% to 0.4% of total deaths.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "In the map shown here you can explore these trends by country over the past few decades. Using the timeline on the chart you can observe changes across the world over time, or by clicking on a country you can see its individual trend.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "What we observe is that for most countries the share of deaths from natural disasters are very low in most years. Often it can be zero \u2013 with no loss of life to disasters \u2013 or well below 0.01%. But we also see clearly the effects of low-frequency but high-impact events: in 2010, more than 70% of deaths in Haiti were the result of the ", "spanType": "span-simple-text" }, { "url": "https://en.wikipedia.org/wiki/2010_Haiti_earthquake", "children": [ { "text": "Port-au-Prince earthquake", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ". ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/share-deaths-from-natural-disasters", "type": "chart", "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Number of deaths from natural disasters", "spanType": "span-simple-text" } ], "type": "heading", "level": 1, "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Annual deaths from natural disasters", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "type": "text", "value": [ { "text": "In the visualization shown here we see the long-term global trend in natural disaster deaths. This shows the estimated annual number of deaths from disasters from 1900 onwards from the ", "spanType": "span-simple-text" }, { "url": "https://www.emdat.be/", "children": [ { "text": "EMDAT International Disaster Database", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ".{ref}EMDAT (2019): OFDA/CRED International Disaster Database, Universit\u00e9 catholique de Louvain \u2013 Brussels \u2013 Belgium{/ref}", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "What we see is that in the early-to-mid 20th century, the annual death toll from disasters was high, often reaching over one million per year. In recent decades we have seen a substantial decline in deaths. In most years fewer than 20,000 die (and in the most recent decade, this has often been less than 10,000). Even in peak years with high-impact events, the death toll has not exceeded 500,000 since the mid-1960s. ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "This decline is even more impressive when we consider the rate of ", "spanType": "span-simple-text" }, { "url": "https://owid.cloud/world-population-growth", "children": [ { "text": "population growth", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " over this period. When we correct for population \u2013 showing this data in terms of death rates (measured per 100,000 people) \u2013 we see an even greater decline over the past century. This chart can be viewed ", "spanType": "span-simple-text" }, { "children": [ { "url": "https://ourworldindata.org/explorers/natural-disasters?facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=true&country=~OWID_WRL", "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "spanType": "span-bold" }, { "text": ".", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "The annual number of deaths from natural disasters is also available by country since 1990. This can be explored in the interactive map.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/explorers/natural-disasters?facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=false&country=~OWID_WRL&hideControls=true", "type": "chart", "parseErrors": [] }, { "url": "https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=false&country=~OWID_WRL&hideControls=true", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Average number of deaths by decade", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "type": "text", "value": [ { "text": "In the chart we show global deaths from natural disasters since 1900, but rather than reporting annual deaths, we show the annual average by decade.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "As we see, over the course of the 20th century there was a significant decline in global deaths from natural disasters. In the early 1900s, the annual average was often in the range of 400,000 to 500,000 deaths. In the second half of the century and into the early 2000s, we have seen a significant decline to less than 100,000 \u2013 at least five times lower than these peaks. ", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "This decline is even more impressive when we consider the rate of ", "spanType": "span-simple-text" }, { "url": "https://owid.cloud/world-population-growth", "children": [ { "text": "population growth", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " over this period. When we correct for population \u2013 showing this data in terms of death rates (measured per 100,000 people) \u2013 then we see a more than 10-fold decline over the past century. This chart can be viewed ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/grapher/decadal-average-death-rates-from-natural-disasters?country=~OWID_WRL", "children": [ { "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-bold" } ], "spanType": "span-link" }, { "text": ".", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/decadal-deaths-disasters-type?country=OWID_WRL~", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Number of deaths by type of natural disaster", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "type": "text", "value": [ { "text": "With almost minute-by-minute updates on what\u2019s happening in the world, we are constantly reminded of the latest disaster. These stories are, of course, important but they do not give us a sense of how the toll of disasters has changed over time.\u00a0", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "For most of us, it is hard to know whether any given year was a particularly deadly one in the context of previous years.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "To understand the devastating toll of disasters today, and in the past, we have built a ", "spanType": "span-simple-text" }, { "url": "http://ourworldindata.org/explorers/natural-disasters", "children": [ { "text": "Natural Disasters Data Explorer", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " which provides estimates of fatalities, displacement and economic damage for every country since 1900. This is based on data sourced from EM-DAT; a project that undertakes the important work of building these incredibly detailed histories of disasters.{ref}EM-DAT, CRED / UCLouvain, Brussels, Belgium \u2013 ", "spanType": "span-simple-text" }, { "url": "http://www.emdat.be", "children": [ { "text": "www.emdat.be", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " (D. Guha-Sapir){/ref}\u00a0", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "In this visualization I give a sense of how the global picture has evolved over the last century. It shows the estimated annual death toll \u2013 from all disasters at the top, followed by a breakdown by type. The size of the bubble represents the total death toll for that year.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "I\u2019ve labeled most of the years with the largest death tolls. This usually provokes the follow-up question: \u201cWhy? What event happened?\u201d. So I\u2019ve also noted large-scale events that contributed to the majority \u2013 ", "spanType": "span-simple-text" }, { "children": [ { "text": "but not necessarily all ", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": "\u2013 of the deaths in that year.\u00a0", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "For example, the estimated global death toll from storms in 2008 was approximately 141,000. 138,366 of these deaths occurred in Cyclone Margis, which struck Myanmar, and is labeled on the chart.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "What we see is that in the 20th century, it was common to have years where the death toll was in the millions. This was usually the result of major droughts or floods. Often these would lead to famines. My colleague Joe Hasell looks at the long history of famines ", "spanType": "span-simple-text" }, { "url": "http://ourworldindata.org/famines", "children": [ { "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-bold" } ], "spanType": "span-link" }, { "text": ".", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Improved food security, resilience to other disasters, and better national and international responses mean that the world has not experienced death tolls of this scale in many decades. Famines today are usually driven by civil war and political unrest.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "In most years, the death toll from disasters is now in the range of 10,000 to 20,000 people. In the most fatal years \u2013 which tend to be those with major earthquakes or cyclones \u2013 this can reach tens to hundreds of thousands.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "This trend does not mean that disasters have become less frequent, or less intense. It means the world today is much better at ", "spanType": "span-simple-text" }, { "children": [ { "text": "preventing deaths", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": " from disasters than in the past. This will become increasingly important in our response and adaptation to ", "spanType": "span-simple-text" }, { "url": "http://ourworldindata.org/climate-change", "children": [ { "text": "climate change", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ".", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "alt": "", "size": "wide", "type": "image", "filename": "Deaths-from-disasters-bubbles-1.png", "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Injuries and displacement from disasters", "spanType": "span-simple-text" } ], "type": "heading", "level": 1, "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "type": "text", "value": [ { "text": "Human impacts from natural disasters are not fully captured in mortality rates. Injury, homelessness, and displacement can all have a significant impact on populations.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "The visualisation below shows the number of people displaced internally (i.e. within a given country) from natural disasters. Note that these figures report on the basis of new cases of displaced persons: if someone is forced to flee their home from natural disasters more than once in any given year, they will be recorded only once within these statistics.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Interactive charts on the following global impacts are available using the links below:", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "url": "https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Injuries&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL", "children": [ { "text": "Injuries", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "spanType": "span-bold" }, { "text": ": number of people injured is defined as \"People suffering from physical injuries, trauma or an illness requiring immediate medical assistance as a direct result of a disaster.\"", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "url": "https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Homeless&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL", "children": [ { "text": "Homelessness", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "spanType": "span-bold" }, { "text": ":\u00a0number of people homeless is defined as \"Number of people whose house is destroyed or heavily damaged and therefore need shelter after an event.\"", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "url": "https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Affected&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL", "children": [ { "children": [ { "text": "Affected", "spanType": "span-simple-text" } ], "spanType": "span-bold" } ], "spanType": "span-link" }, { "text": ":\u00a0number of people affected is defined as \"People requiring immediate assistance during a period of emergency, i.e. requiring basic survival needs such as food, water, shelter, sanitation and immediate medical assistance.\"", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "url": "https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Total+affected&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL", "children": [ { "children": [ { "text": "Total number affected", "spanType": "span-simple-text" } ], "spanType": "span-bold" } ], "spanType": "span-link" }, { "text": ":\u00a0total number of people affected is defined as \"the sum of the injured, affected and left homeless after a disaster.\"", "spanType": "span-simple-text" } ], "parseErrors": [] } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/internally-displaced-persons-from-disasters", "type": "chart", "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Natural disasters by type", "spanType": "span-simple-text" } ], "type": "heading", "level": 1, "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Earthquakes", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "text": [ { "text": "Earthquake events", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "Earthquake events occur across the world every day. The US Geological Survey (USGS) tracks and reports global earthquakes, with (close to) real-time updates which you can ", "spanType": "span-simple-text" }, { "children": [ { "url": "https://earthquake.usgs.gov/earthquakes/map/", "children": [ { "text": "find here", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "spanType": "span-bold" }, { "text": ".", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "However, the earthquakes which occur most frequently are often too small to cause significant damage (whether to human life, or in economic terms).", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "In the chart below we show the long history of known earthquakes classified by the ", "spanType": "span-simple-text" }, { "url": "https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1", "children": [ { "text": "National Geophysical Data Center (NGDC) of the NOAA", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " as 'significant' earthquakes. Significant earthquakes are those which are large enough to cause notable damage. They must meet at least one of the following criteria:\u00a0caused deaths, moderate damage ($1 million or more), magnitude 7.5 or greater, Modified Mercalli Intensity (MMI) X or greater, or generated a tsunami.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Available data\u00a0\u2014 which you can explore in the chart below\u00a0\u2014 extends back to 2150 BC. But we should be aware that most recent records will be much more complete than our long-run historic estimates. An increase in the number of recorded earthquakes doesn't necessarily mean this was the true trend over time. By clicking on a country in the map below, you can view it's full series of known significant earthquakes.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/significant-earthquakes", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Deaths from earthquakes", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "Alongside estimates of the number of earthquake events, the\u00a0National Geophysical Data Center (NGDC) of the NOAA also publish estimates of the number of deaths over this long-term series. In the chart below we see the estimated mortality numbers from 2000 BC through to 2017.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "These figures can be found for specific countries using the \"change country\" function in the bottom-left of the chart, or by selecting the \"map\" on the bottom-right.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "At the global level we see that earthquake deaths have been a persistent human risk through time.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/earthquake-deaths", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "What were the world's deadliest earthquakes?", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "The number of people dying in natural disasters is ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/natural-disasters#number-of-deaths-from-natural-disasters", "children": [ { "text": "lower today", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " than it was in the past; the world has become more resilient.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Earthquakes, however, can still claim a large number of lives. Whilst historically, floods, droughts, and epidemics dominated disaster deaths, a high annual death toll in recent years often results from a major earthquake and possibly a tsunami caused by them. Since 2000, the two peak years in annual death tolls (reaching hundreds of thousands) were 2004 and 2010. Earthquake deaths accounted for 93 percent and 69 percent of disaster deaths, respectively. Both events (the Sumatra earthquake and tsunami of 2004 and the Port-au-Prince earthquake in 2010) are in the deadliest earthquake rankings below.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "What have been the most deadly earthquakes in human history? In the visualization, we have mapped the top 10 rankings of known earthquakes, which resulted in the largest number of deaths.{ref}Since two events are ranked equally in 8th place, a total of 11 are included.{/ref} This ranking is based on mortality estimates from the NOAA's National Geophysical Data Center (NGDC).{ref}National Geophysical Data Center / World Data Service (NGDC/WDS): Significant Earthquake Database. National Geophysical Data Center, NOAA. Available at:\u00a0", "spanType": "span-simple-text" }, { "url": "https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1", "children": [ { "text": "https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ".{/ref}", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Clicking on the visualization will open it in higher resolution. This ranking is also summarized in table form.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "The most deadly earthquake in history was in Shaanxi, China in 1556. It's estimated to have killed 830,000 people. This is more than twice that of the second most fatal: the recent Port-au-Prince earthquake in Haiti in 2010. It's reported that 316,000 people died as a result.{ref}The death toll of the Haitian earthquake is still disputed. Here, we present the adopted figure by the NGDC of the NOAA (for consistency with other earthquakes); this is the figure\u0003 reported by the Haitian government. Some sources suggest a lower figure of 220,000. In the latter case, this event would fall to 7th place in the above rankings.{/ref}", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Two very recent earthquakes\u00a0\u2014 the Sumatra earthquake and tsunami of 2004 and the 2010 Port-au-Prince earthquake \u2014 feature amongst the most deadly in human history. But equally, some of the most fatal occurred in the very distant past. The third deadliest was the earthquake in Antakya (Turkey) in 115 CE. Both old and very recent earthquakes feature near the top of the list. The deadly nature of earthquakes has been a persistent threat throughout our history.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "alt": "", "size": "wide", "type": "image", "filename": "Deadliest-earthquakes.png", "parseErrors": [] }, { "type": "html", "value": "<div class=\"raw-html-table__container\"><table><thead><tr><th scope=\"col\" colspan=\"1\">Ranking</th><th scope=\"col\" colspan=\"1\">Location</th><th scope=\"col\" colspan=\"1\">Year</th><th scope=\"col\" colspan=\"1\">Estimated death toll</th><th scope=\"col\" colspan=\"1\">Earthquake magnitude </th><th scope=\"col\" colspan=\"1\">Additional information</th></tr></thead><tbody><tr><td colspan=\"1\" rowspan=\"1\">1</td><td colspan=\"1\" rowspan=\"1\">Shaanxi, China</td><td colspan=\"1\" rowspan=\"1\">1556</td><td colspan=\"1\" rowspan=\"1\">830,000</td><td colspan=\"1\" rowspan=\"1\">8</td><td colspan=\"1\" rowspan=\"1\">More than <a href=\"https://en.wikipedia.org/wiki/1556_Shaanxi_earthquake\">97 counties in China</a> were affected. A 520-mile wide area destroyed. In some counties it's estimated that up to 60% of the population died. Such catastrophic losses are attributed to loess cave settlements, which collapsed as a result.</td></tr><tr><td colspan=\"1\" rowspan=\"1\">2</td><td colspan=\"1\" rowspan=\"1\">Port-au-Prince, Haiti</td><td colspan=\"1\" rowspan=\"1\">2010</td><td colspan=\"1\" rowspan=\"1\">316,000</td><td colspan=\"1\" rowspan=\"1\">7</td><td colspan=\"1\" rowspan=\"1\">Death toll is still disputed. Here we present the adopted figure by the NGDC of the NOAA (for consistency with other earthquakes); this is the figure\u0003 reported by the Haitian government. Some sources suggest a lower figure of 220,000. In the latter case, this event would fall to 7th place in the above rankings.</td></tr><tr><td colspan=\"1\" rowspan=\"1\">3</td><td colspan=\"1\" rowspan=\"1\">Antakya, Turkey</td><td colspan=\"1\" rowspan=\"1\">115</td><td colspan=\"1\" rowspan=\"1\">260,000</td><td colspan=\"1\" rowspan=\"1\">7.5</td><td colspan=\"1\" rowspan=\"1\">Antioch (ancient ruins which lie near the modern city Antakya) and surrounding areas suffered severe damage. Apamea was <a href=\"https://www.sciencedirect.com/science/article/pii/S0012821X03001444\">also destroyed and Beirut suffered severe damage</a>. A local <a href=\"https://www.earth-prints.org/bitstream/2122/908/1/01Sbeinati.pdf\">tsunami was triggered</a> causing damage to the coast of Lebanon.</td></tr><tr><td colspan=\"1\" rowspan=\"1\">4</td><td colspan=\"1\" rowspan=\"1\">Antakya, Turkey</td><td colspan=\"1\" rowspan=\"1\">525</td><td colspan=\"1\" rowspan=\"1\">250,000</td><td colspan=\"1\" rowspan=\"1\">7</td><td colspan=\"1\" rowspan=\"1\">Severe damage to the area of the Byzantine Empire. The earthquake caused severe damage to many buildings. However, severe damage was also <a href=\"https://www.earth-prints.org/bitstream/2122/908/1/01Sbeinati.pdf\">caused by fires in the aftermath</a> combined with strong wind.</td></tr><tr><td colspan=\"1\" rowspan=\"1\">5</td><td colspan=\"1\" rowspan=\"1\">Tangshan, China</td><td colspan=\"1\" rowspan=\"1\">1976</td><td colspan=\"1\" rowspan=\"1\">242,769</td><td colspan=\"1\" rowspan=\"1\">7.5</td><td colspan=\"1\" rowspan=\"1\">Reported that the earthquake risk had been greatly underestimated meaning almost all buildings and structures were designed and built without seismic considerations. Estimated that <a href=\"https://authors.library.caltech.edu/26539/\">up to 85% of buildings collapsed</a>. Tangshan therefore large comprised of <a href=\"https://www.nap.edu/login.php?record_id=19764\">unreinforced brick buildings</a> which resulted in a large death toll.</td></tr><tr><td colspan=\"1\" rowspan=\"1\">6</td><td colspan=\"1\" rowspan=\"1\">Gyzndzha, Azerbaijan</td><td colspan=\"1\" rowspan=\"1\">1139</td><td colspan=\"1\" rowspan=\"1\">230,000</td><td colspan=\"1\" rowspan=\"1\">Unknown</td><td colspan=\"1\" rowspan=\"1\">Often <a href=\"https://www.seismology.az/en/stations/5#.W7aH-ZM-eL8\">termed the Ganja earthquake</a>. Much less is documented on the specific details of this event.</td></tr><tr><td colspan=\"1\" rowspan=\"1\">7</td><td colspan=\"1\" rowspan=\"1\">Sumatra, Indonesia</td><td colspan=\"1\" rowspan=\"1\">2004</td><td colspan=\"1\" rowspan=\"1\">227,899</td><td colspan=\"1\" rowspan=\"1\">9.1</td><td colspan=\"1\" rowspan=\"1\">Earthquake in Indian Ocean off the coast of Sumatra resulted in a series of large tsunamis (<a href=\"https://soundwaves.usgs.gov/2005/03/\">ranging 15 to 30 metres in height</a>). Victims across 14 countries in the regions with Indonesia being the hardest-hit, followed by Sri Lanka, India and Thailand. There was no tsunami warning system in place.</td></tr><tr><td colspan=\"1\" rowspan=\"1\">=8</td><td colspan=\"1\" rowspan=\"1\">Damghan, Iran</td><td colspan=\"1\" rowspan=\"1\">856</td><td colspan=\"1\" rowspan=\"1\">200,000</td><td colspan=\"1\" rowspan=\"1\">7.9</td><td colspan=\"1\" rowspan=\"1\">Estimated that <a href=\"https://en.wikipedia.org/wiki/856_Damghan_earthquake\">extent of the damage area was 220 miles long</a>. It's also hypothesised that the ancient city of \u0160ahr-e Qumis was so badly damaged that it was abandoned after the earthquake.</td></tr><tr><td colspan=\"1\" rowspan=\"1\">=8</td><td colspan=\"1\" rowspan=\"1\">Gansu, China</td><td colspan=\"1\" rowspan=\"1\">1920</td><td colspan=\"1\" rowspan=\"1\">200,000</td><td colspan=\"1\" rowspan=\"1\">8.3</td><td colspan=\"1\" rowspan=\"1\">Damage occurred <a href=\"https://en.wikipedia.org/wiki/1920_Haiyuan_earthquake\">across 7 provinces and regions</a>. In some cities almost all buildings collapsed, or were buried by landslides. It was reported than additional deaths occurred due to cold exposure: fear from aftershocks meant survivors tried to rely only on temporary shelters which were unsuitable for the harsh winter.</td></tr><tr><td colspan=\"1\" rowspan=\"1\">9</td><td colspan=\"1\" rowspan=\"1\">Dvin, Armenia</td><td colspan=\"1\" rowspan=\"1\">893</td><td colspan=\"1\" rowspan=\"1\">150,000</td><td colspan=\"1\" rowspan=\"1\">Unknown</td><td colspan=\"1\" rowspan=\"1\">City of Dvin was destroyed, with the collapse of most buildings, defensive walls and palaces; <a href=\"https://www.earth-prints.org/bitstream/2122/1795/1/22%20hasrat'yan.pdf\">estimated that only 100 buildings were left standing</a>. With its city defences ruined, Dvin was <a href=\"https://en.wikipedia.org/wiki/893_Dvin_earthquake\">taken over and turned into a military base</a> by Muhammad ibn Abi'l-Saj, the Sajid emir of Adharbayjan.</td></tr><tr><td colspan=\"1\" rowspan=\"1\">10</td><td colspan=\"1\" rowspan=\"1\">Tokyo, Japan</td><td colspan=\"1\" rowspan=\"1\">1923</td><td colspan=\"1\" rowspan=\"1\">142,807</td><td colspan=\"1\" rowspan=\"1\">7.9</td><td colspan=\"1\" rowspan=\"1\">More than <a href=\"https://www.britannica.com/event/Tokyo-Yokohama-earthquake-of-1923\">half of brick buildings, and 10% of reinforced structures</a> collapsed. Caused a tsunami with height up to 12m. Large fires broke out; combined with a large tornado, these spread quickly. </td></tr></tbody></table></div>", "parseErrors": [] }, { "text": [ { "text": "Volcanoes", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "text": [ { "text": "Number of significant volcanic eruptions", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "There are a large number of volcanoes across the world which are volcanically active, but display little or only very low-level activity.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "In the map we see the number of ", "spanType": "span-simple-text" }, { "children": [ { "text": "significant", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": " volcanic eruptions which occur in each country in a given year. A significant eruption is classified as one that meets at least one of the following criteria: caused fatalities, caused moderate damage (approximately $1 million or more), with a ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/natural-disasters#volcanic-explosivity-index-vei", "children": [ { "text": "Volcanic Explosivity Index", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " of 6 or larger, caused a tsunami, or was associated with a major earthquake.{ref}This data is sourced from the The ", "spanType": "span-simple-text" }, { "url": "https://www.ngdc.noaa.gov/nndc/servlet/ShowDatasets?dataset=102557&search_look=50&display_look=50", "children": [ { "text": "Significant Volcanic Eruption Database", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " is a global listing of over 500 significant eruptions.{/ref}", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Estimates of volcanic eruptions are available dating back as early as 1750 BCE, however, the data completeness for long historic events will be much lower than in the recent past.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/significant-volcanic-eruptions", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Deaths from volcanic eruptions", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "In the visualization we see the number of deaths from significant volcanic eruptions across the world. Using the timeline on the map we can see the frequency of volcanic activity deaths over time. ", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "If we look at deaths over the past century we see several high-impact events: the ", "spanType": "span-simple-text" }, { "url": "https://en.wikipedia.org/wiki/Armero_tragedy", "children": [ { "text": "Nevado del Ruiz eruption", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " in Colombia in 1985; the Mount Pel\u00e9e eruption in Martinique in 1902; and ", "spanType": "span-simple-text" }, { "url": "https://en.wikipedia.org/wiki/1883_eruption_of_Krakatoa", "children": [ { "text": "1883 eruption of Krakatoa", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " in Indonesia.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/deaths-from-volcanic-eruptions", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Landslides", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "type": "text", "value": [ { "text": "This visualization \u2013 sourced from the NASA Socioeconomic Data And Applications Center (SEDAC) \u2013 shows the distribution of mortality risk from landslides across the world.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "As we would expect, the risks of landslides are much greater close to highly mountainous regions with dense neighbouring populations. This makes the mortality risk highest across the Andes region in South America, and the Himalayas across Asia.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "alt": "Global Landslide Mortality Risk Distribution \u2013\u00a0SEDAC (NASA)0", "size": "wide", "type": "image", "filename": "ourworldindata_global-landslide-mortality-risk-distribution-\u2013-sedac-nasa0.png", "parseErrors": [] }, { "text": [ { "text": "Famines & Droughts", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "type": "text", "value": [ { "text": "We cover the history of Famines in detail in our dedicated entry ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/famines", "children": [ { "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-bold" } ], "spanType": "span-link" }, { "text": ". For this research we assembled a new global dataset on famines from the 1860s until 2016.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "In the visualization shown here we see trends in drought severity in the United States. Given is the annual data of drought severity, plus the 9-year average.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "This is measured by the The Palmer Drought Severity Index: the average moisture conditions observed between 1931 and 1990 at a given location is given an index value of zero. A positive value means conditions are wetter than average, while a negative value is drier than average. A value between -2 and -3 indicates moderate drought, -3 to -4 is severe drought, and -4 or below indicates extreme drought.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/drought-severity-index-us", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Hurricanes, Tornados, and Cyclones", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "text": [ { "text": "Long-term trends in deaths from US weather events", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "Trends in the US provide some of the most complete data on impacts and deaths from weather events over time.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "This chart shows death rates from lightning and other weather events in the United States over time. Death rates are given as the number of deaths per million individuals. Over this period, we see that on average each has seen a significant decline in death rates. This is primarily the result of improved infrastructure, predicted and response systems to disaster events.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/fatality-rates-in-the-us-due-to-weather-events", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Intensity of North Atlantic Hurricanes", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "A key metric for assessing hurricane severity is their intensity, and the power they carry.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "The visualizations here use two metrics to define this: the accumulated cyclone energy (ACE), an index that measures the activity of a cyclone season; and the power dissipation index of cyclones.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/ace-north-atlantic-hurricanes", "type": "chart", "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/cyclone-power-dissipation-index", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Extreme precipitation and flooding", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "text": [ { "text": "Precipitation anomalies", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "In the visualization shown we see the global precipitation anomaly each year; trends in the US-specific anomaly can be found ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/grapher/precipitation-anomaly", "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ". ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "This precipitation anomaly is measured relative to the century average from 1901 to 2000. Positive values indicate a wetter year than normal; negative values indicate a drier year.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Also shown is US-specific data on the share of land area which experiences unusually high precipitation in any given year. ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/global-precipitation-anomaly", "type": "chart", "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/unusually-high-precipitation-usa", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Precipitation extremes", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "We can look at precipitation anomalies over the course of year, however, flooding events are often caused by intense rainfall over much shorter periods. Flooding events tend to occur when there is extremely high rainfall over the course of hours or days.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "The visualization here shows the extent of extreme one-day precipitation in the US. What we see is a general upwards trend in the extent of extreme rainfall in recent decades.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/extreme-one-day-precipitation-usa", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Extreme Temperature (Heat & Cold)", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "type": "text", "value": [ { "text": "Extreme temperature risks to human health and mortality can result from both exposure to extreme heat and cold.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "text": [ { "text": "Heatwaves and high temperatures", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "In the visualizations shown here we see long-term data on heatwaves and unusually high temperatures in the United States.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Overall we see there is significant year-to-year variability in the extent of heatwave events. What stands out over the past century of data was the ", "spanType": "span-simple-text" }, { "url": "https://en.wikipedia.org/wiki/1936_North_American_heat_wave", "children": [ { "text": "1936 North American heatwave", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " \u2013 one of the most extreme heat wave events in modern history, which coincided with the Great Depression and Dust Bowl of the 1930s.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "When we look at the trajectory of unusually high summer temperatures over time (defined as 'unusually high' in the context of historical records) we see an upward trend in recent decades.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/heat-wave-index-usa", "type": "chart", "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/high-summer-temp-usa", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Cold temperatures", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "Whilst we often focus on heatwave and warm temperatures in relation to weather extremes, extremely low temperatures can often have a high toll on human health and mortality. ", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "In the visualization here we show trends in the share of US land area experiencing unusually low winter temperatures. In recent years there appears to have been a declining trend in the extent of the US experiencing particularly cold winters.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/low-winter-temps-usa", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Wildfires", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "text": [ { "text": "US Wildfires", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "How are the frequency and extent of wildfires in the United States changing over time?", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "In the charts below we provide three overviews: the number of wildfires, the total acres burned, and the average acres burned per wildfire. This data is shown from 1983 onwards, when comparable data recording began.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Over the past 30-35 years we notice three general trends in the charts below (although there is significant year-to-year variability):", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "text": "on average, the annual number of wildfires has not changed much;", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "on average, the total acres burned has increased from the 1980s and 1990s into the 21st century;", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "the combination of these two factors suggest that the average acres burned ", "spanType": "span-simple-text" }, { "children": [ { "text": "per wildfire", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": " has increased.", "spanType": "span-simple-text" } ], "parseErrors": [] } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "There has been significant media coverage of the long-run statistics of US wildfires reported by the National Interagency Fire Center (NIFC). The original statistics are available back to the year 1926. When we look at this long-term series it suggests there has been a significant decline in acres burned over the past century. However, the NIFC explicitly state:", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "text": [ { "type": "text", "value": [ { "text": "Prior to 1983, sources of these figures are not known, or cannot be confirmed, and were not derived from the current situation reporting process. As a result the figures prior to 1983 should not be compared to later data.", "spanType": "span-simple-text" } ], "parseErrors": [] } ], "type": "blockquote", "parseErrors": [] }, { "type": "text", "value": [ { "text": "Representatives from the NIFC have again confirmed (see the Carbon Brief's coverage ", "spanType": "span-simple-text" }, { "children": [ { "url": "https://www.carbonbrief.org/factcheck-how-global-warming-has-increased-us-wildfires", "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "spanType": "span-bold" }, { "text": ") that these historic statistics are not comparable to those since 1983. The lack of reliable methods of measurement and reporting mean some historic statistics may in fact be double or triple-counted in national statistics.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "This means we cannot compare the recent data below with old, historic records. But it also doesn't confirm that acres burned today are higher than the first half of the 20th century. Historically, fires were an ", "spanType": "span-simple-text" }, { "url": "https://www.fs.fed.us/research/sustain/docs/national-reports/2003/data/documents/Indicator%2015/Indicator%2015.pdf", "children": [ { "text": "often-used method", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " of clearing land for agriculture, for example. It's not implausible to expect that wildfires of the past may have been larger than today but the available data is not reliable enough to confirm this.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/wildfire-numbers-usa", "type": "chart", "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/acres-burned-usa", "type": "chart", "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/acres-burned-per-wildfire-usa", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Lightning", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "text": [ { "text": "Long-term trends in US lightning strikes", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "This chart shows the declining death rate due to lightning strikes in the US.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "In the first decade of the 20th century the average annual rate of deaths was 4.5 per million people in the US. In the first 15 years of the 21st century the death rate had declined to an average of 0.12 deaths per million. This is a 37-fold reduction in the likelihood of being killed by lightning in the US.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/fatality-rates-due-to-lightning-in-the-us", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Lightning strikes across the world", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "The map here shows the distribution of lightning strikes across the world. This is given as the lightning strike density \u2013 the average strikes per square kilometer each year. ", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "In particular we see the high frequency of strikes across the Equatorial regions, especially across central Africa.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "alt": "World Map of Frequency of lightning strikes \u2013 Wikipedia [NASA data]0", "size": "wide", "type": "image", "filename": "ourworldindata_world-map-of-frequency-of-lightning-strikes-\u2013-wikipedia-nasa-data0.png", "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Economic costs", "spanType": "span-simple-text" } ], "type": "heading", "level": 1, "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Global disaster costs", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "type": "text", "value": [ { "text": "Natural disasters not only have devastating impacts in terms of the loss of human life, but can also cause severe destruction with economic costs.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "When we look at global economic costs over time in ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/grapher/damage-costs-from-natural-disasters", "children": [ { "text": "absolute terms", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " we tend to see rising costs. But, importantly, the world \u2013 and most countries \u2013 have also ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/economic-growth", "children": [ { "text": "gotten richer", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ". Global gross domestic product has increased ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/grapher/world-gdp-over-the-last-two-millennia?time=1900..2015", "children": [ { "text": "more than four-fold", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " since 1970. We might therefore expect that for any given disaster, the absolute economic costs could be higher than in the past. ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "A more appropriate metric to compare economic costs over time is to look at them in relation to GDP. This is the ", "spanType": "span-simple-text" }, { "url": "https://sdg-tracker.org/cities#11.5.2", "children": [ { "text": "indicator adopted", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " by all countries as part of the UN Sustainable Development Goals to monitor progress on resilience to disaster costs.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "In the chart, we see global direct disaster losses given as a share of GDP.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/explorers/natural-disasters?facet=none&country=~OWID_WRL&Disaster+Type=All+disasters&Impact=Economic+damages+%28%25+GDP%29&Timespan=Annual&Per+capita=false&hideControls=true", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Disaster costs by country", "spanType": "span-simple-text" } ], "type": "heading", "level": 2, "parseErrors": [] }, { "type": "text", "value": [ { "text": "Since economic losses from disasters in relation to GDP is the ", "spanType": "span-simple-text" }, { "url": "https://sdg-tracker.org/cities#11.5.2", "children": [ { "text": "indicator adopted", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " by all countries within the UN Sustainable Development Goals, this data is also now reported for each country.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "The map shows direct disaster costs for each country as a share of its GDP. Here we see large variations by country \u2013 a 100-fold difference ranging from less than 0.05% to 5%. This data can be found in absolute terms ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/grapher/direct-disaster-economic-loss?tab=chart", "children": [ { "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-bold" } ], "spanType": "span-link" }, { "text": ". ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/direct-disaster-loss-as-a-share-of-gdp", "type": "chart", "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Not all deaths are equal: How many deaths make a natural disaster newsworthy?", "spanType": "span-simple-text" } ], "type": "heading", "level": 1, "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "type": "text", "value": [ { "text": "How many deaths does it take for a natural disaster to be newsworthy? ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "This is a question researchers Thomas Eisensee and David Str\u00f6mberg asked in a 2007 study.{ref}Eisensee, T., & Str\u00f6mberg, D. (2007). News droughts, news floods, and US disaster relief. The Quarterly Journal of Economics, 122(2), 693-728. Online here: ", "spanType": "span-simple-text" }, { "url": "http://perseus.iies.su.se/~dstro/wpdisasters.pdf", "children": [ { "text": "http://perseus.iies.su.se/~dstro/wpdisasters.pdf", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": "{/ref} ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "The two authors found that for every person killed by a volcano, nearly 40,000 people have to die of a food shortage to get the same probability of coverage in US televised news.{ref}As is mentioned below in more detail, this figure is controlled for other factors (i.e. country, year, month, and number of people affected).{/ref} ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "text": [ { "text": "The type of disaster matters", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "In other words, the ", "spanType": "span-simple-text" }, { "children": [ { "text": "type", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": " of disaster matters to how newsworthy networks find it to be. The visualizations show the extent of this observed \"news effect\". The chart shows the proportion of each type of disaster that receives news coverage, and the second shows the \"casualties ratio\", which tells us\u2014all else equal\u2014how many casualties would make media coverage equally likely for each type of disaster.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/news-coverage-of-disasters", "type": "chart", "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/how-many-deaths-does-it-take-for-a-disaster-to-receive-news-coverage", "type": "chart", "parseErrors": [] }, { "type": "text", "value": [ { "text": "The study, which primarily set out to examine mass media\u2019s influence on US natural disaster response, considered over 5,000 natural disasters{ref}The study used a database compiled by the Centre for Research on the Epidemiology of Disasters, where an event qualifies as a disaster if at least one of the following criteria are fulfilled: ten or more people are reported, killed; 100 or more people are reported affected, injured, and/or homeless; there has been a declaration of a state of emergency; or there has been a call for international assistance.{/ref} and 700,000 news stories from the major US national broadcast networks (ABC, CBS, NBC, and CNN) between 1968 and 2002. ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "The findings tells us, among other important things, that networks tend to be selective in their coverage and attention is not reflecting the severity and number of people killed or affected by a natural disaster.", "spanType": "span-simple-text" }, { "spanType": "span-newline" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Instead of considering the objective damage caused by natural disasters, networks tend to look for disasters that are \u201crife with drama\u201d, as one New York Times article put it{ref}Eisensee, T., & Str\u00f6mberg, D. (2007). News droughts, news floods, and US disaster relief. The Quarterly Journal of Economics, 122(2), 693-728. Online here: ", "spanType": "span-simple-text" }, { "url": "http://perseus.iies.su.se/~dstro/wpdisasters.pdf", "children": [ { "text": "http://perseus.iies.su.se/~dstro/wpdisasters.pdf", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": "{/ref}\u2014hurricanes, tornadoes, forest fires, earthquakes all make for splashy headlines and captivating visuals. ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Thanks to this selectivity, less \"spectacular\" but often times more deadly natural disasters tend to get passed over. ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/famines/", "children": [ { "text": "Food shortages", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ", for example, result in the most casualties and affect the most people per incident{ref}Based on the study\u2019s analysis of data compiled by the Centre for Research on the Epidemiology of Disasters.{/ref} but their onset is more gradual than that of a volcanic explosion or sudden earthquake. As a result, food shortages are covered only 3% of the time while a comparatively indulgent 30% of earthquakes and volcanic events get their time in the spotlight. ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Additionally, when the researchers \u201chold all else equal\u201d by controlling for factors such as yearly trends in news intensity and the number of people killed and affected, the difference in coverage is even more pronounced.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "This bias for the spectacular is not only unfair and misleading, but also has the potential to misallocate attention and aid. Disasters that happen in an instant leave little time for preventative intervention. On the other hand, the gradual disasters that tend to affect more lives build up slowly, allowing more time for preventative measures to be taken. However, in a Catch-22 situation, the gradual nature of these calamities is also what prevents them from garnering the media attention they deserve.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "text": [ { "text": "And the location of the disaster matters too", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "There are other biases, too. Eisensee and Str\u00f6mberg found that while television networks cover more than 15% of the disasters in Europe and South Central America, they show less than 5% of the disasters in Africa and the Pacific. Disasters in Africa tend to get less coverage than ones in Asia because they are less \"spectacular\", with more droughts and food shortages occurring there relative to Asia. ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "However, after controlling for disaster type, along with other factors such as the number killed and the timing of the news, there is no significant difference between coverage of African and Asian disasters. Instead, a huge difference emerges between coverage of Africa, Asia, and the Pacific on the one hand, and Europe and South and Central America, on the other. ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "According to the researchers\u2019 estimates, 45 times as many people would have to die in an African disaster for it to garner the same media attention as a European one. The two visualizations show the extent of this bias.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "ABC News\u2019s slogan is \u201cSee the whole picture\u201d and CNN\u2019s is \u201cGo there\u201d, but good follow-up questions might be: what exactly, and where?", "spanType": "span-simple-text" }, { "spanType": "span-newline" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/news-coverage-of-disasters-by-continent", "type": "chart", "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/how-many-deaths-does-it-take-for-a-disaster-in-different-continents-to-receive-news-coverage", "type": "chart", "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Link between poverty and deaths from natural disasters", "spanType": "span-simple-text" } ], "type": "heading", "level": 1, "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "type": "text", "value": [ { "text": "One of the major successes over the past century has been the dramatic ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/natural-disasters#number-of-deaths-from-natural-disasters", "children": [ { "text": "decline in global deaths", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " from natural disasters \u2013 this is despite the fact that the ", "spanType": "span-simple-text" }, { "url": "https://owid.cloud/world-population-growth", "children": [ { "text": "human population", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " has increased rapidly over this period.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Behind this improvement has been the improvement in living standards; access to and development of resilient infrastructure; and effective response systems. These factors have been driven by an ", "spanType": "span-simple-text" }, { "url": "https://owid.cloud/economic-growth", "children": [ { "text": "increase in incomes", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " across the world.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "What remains true today is that populations in low-income countries \u2013 those where a large percentage of the population still live in ", "spanType": "span-simple-text" }, { "url": "https://owid.cloud/extreme-poverty", "children": [ { "text": "extreme poverty", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ", or score low on the ", "spanType": "span-simple-text" }, { "url": "https://ourworldindata.org/human-development-index/", "children": [ { "text": "Human Development Index", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " \u2013 are more vulnerable to the effects of natural disasters. ", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "We see this effect in the visualization shown. This chart shows the death rates from natural disasters \u2013 the number of deaths per 100,000 population \u2013 of countries grouped by their ", "spanType": "span-simple-text" }, { "url": "http://www.healthdata.org/taxonomy/glossary/socio-demographic-index-sdi", "children": [ { "text": "socio-demographic index", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " (SDI). SDI is a metric of development, where low-SDI denotes countries with low standards of living.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "What we see is that the large spikes in death rates occur almost exclusively for countries with a low or low-middle SDI. Highly developed countries are much more resilient to disaster events and therefore have a consistently low death rate from natural disasters.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Note that this does not mean low-income countries have high death tolls from disasters year-to-year: the data here shows that in most years they also have very low death rates. But when low-frequency, high-impact events do occur they are particularly vulnerable to its effects.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Overall development, poverty alleviation, and knowledge-sharing of how to increase resilience to natural disasters will therefore be key to reducing the toll of disasters in the decades to come.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/death-rates-natural-disasters", "type": "chart", "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Definitions & Metrics", "spanType": "span-simple-text" } ], "type": "heading", "level": 1, "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Hurricanes, cyclones & typhoons", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "There are multiple terms used to describe extreme weather events: hurricanes, typhoons, cyclones and tornadoes. What is the difference between these terms, and how are they defined?", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "The terms\u00a0", "spanType": "span-simple-text" }, { "children": [ { "text": "hurricane", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": ",\u00a0", "spanType": "span-simple-text" }, { "children": [ { "text": "cyclone", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " and\u00a0", "spanType": "span-simple-text" }, { "children": [ { "text": "typhoon", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " all refer to the same thing; they can be used interchangeably. Hurricanes and typhoons are both described as the weather phenomenon 'tropical cyclone'.\u00a0A tropical cyclone is a weather event which originates over tropical or subtropical waters and results in a rotating, organized system of clouds and thunderstorms. Its circulation patterns should be closed and low-level.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "The choice of terminology is location-specific and depends on where the storm originates. The term\u00a0", "spanType": "span-simple-text" }, { "children": [ { "text": "hurricane", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": " is used to describe a tropical cyclone which originates\u00a0in the North Atlantic, central North Pacific, and eastern North Pacific. When it originates in the Northwest Pacific, we call it\u00a0", "spanType": "span-simple-text" }, { "children": [ { "text": "typhoon", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": ". In the South Pacific and Indian Ocean the general term\u00a0", "spanType": "span-simple-text" }, { "children": [ { "text": "tropical cyclone", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": "\u00a0is used.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "In other words, ", "spanType": "span-simple-text" }, { "url": "https://oceanservice.noaa.gov/facts/cyclone.html", "children": [ { "text": "the only difference", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " between a hurricane and typhoon is where it occurs.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "text": [ { "text": "When does a storm become a hurricane?", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "The characteristics of a hurricane are described in detail at the ", "spanType": "span-simple-text" }, { "url": "https://www.nasa.gov/audience/forstudents/k-4/stories/nasa-knows/what-are-hurricanes-k4.html", "children": [ { "text": "NASA website", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ".", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "A hurricane evolves from a tropical disturbance or storm based on a threshold of wind speed.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "A tropical disturbance arises over warm ocean waters. It can grow into a tropical depression which is an area of rotating thunderstorms with winds up to 62 kilometres (38 miles) per hour. From there, a depression evolves into a tropical storm if its wind speed reaches 63 km/hr (39 mph).", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Finally a hurricane is formed when a tropical storm reaches a wind speed of 119 km/hr (74 mph).", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "text": [ { "text": "Difference between hurricanes and tornadoes", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "But, hurricanes/typhoons/cyclones\u00a0", "spanType": "span-simple-text" }, { "children": [ { "text": "are", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": " distinctly different from tornadoes.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "Whilst hurricanes and tornadoes have a characteristic circulatory wind patterns, they are very different weather systems. The main ", "spanType": "span-simple-text" }, { "url": "https://pmm.nasa.gov/resources/faq/what-difference-between-tornado-and-hurricane", "children": [ { "text": "difference between the systems", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " is scale (tornadoes are small-scale circulatory systems; hurricanes are large-scale). These differences are highlighted in the table below:", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "html", "value": "<div class=\"raw-html-table__container\"><table><thead><tr><th scope=\"col\" colspan=\"1\"></th><th scope=\"col\" colspan=\"1\">Hurricanes/typhoons</th><th scope=\"col\" colspan=\"1\">Tornadoes</th></tr></thead><tbody><tr><td colspan=\"1\" rowspan=\"1\"><strong>Diameter</strong></td><td colspan=\"1\" rowspan=\"1\">60 to 1000s miles</td><td colspan=\"1\" rowspan=\"1\">Up to 1 - 1.5 miles (usually less)</td></tr><tr><td colspan=\"1\" rowspan=\"1\"><strong>Wind speed</strong></td><td colspan=\"1\" rowspan=\"1\">74 to 200 mph</td><td colspan=\"1\" rowspan=\"1\">40 to 300 mph</td></tr><tr><td colspan=\"1\" rowspan=\"1\"><strong>Lifetime</strong></td><td colspan=\"1\" rowspan=\"1\">Long (usually days)</td><td colspan=\"1\" rowspan=\"1\">Very short (usually minutes)</td></tr><tr><td colspan=\"1\" rowspan=\"1\"><strong>Travel distance</strong></td><td colspan=\"1\" rowspan=\"1\">Long (100 metres to 100 miles)</td><td colspan=\"1\" rowspan=\"1\">Short distances</td></tr><tr><td colspan=\"1\" rowspan=\"1\"><strong>Environmental impact</strong></td><td colspan=\"1\" rowspan=\"1\">Can have impact on wider environment and atmospheric patterns.</td><td colspan=\"1\" rowspan=\"1\">Local (although can be very high impact). Little wider impact on atmospheric systems or environment.</td></tr></tbody></table></div>", "parseErrors": [] }, { "text": [ { "text": "Volcanic Explosivity Index (VEI)", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "The intensity or size of volcanic eruptions are most commonly defined by a metric termed the 'volcanic explosivity index (VEI)'. The VEI is derived based on the erupted mass or deposit of an eruption. The scale for VEI was outlined by Newhall & Self (1982), but is now commonly adopted in geophysical reporting.{ref}Newhall, C.G. and Self, S (1982). The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism.", "spanType": "span-simple-text" }, { "children": [ { "text": "Jour Geophys Res (Oceans & Atmospheres)", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": ", 87:1231-1238. Available at:\u00a0", "spanType": "span-simple-text" }, { "url": "https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC087iC02p01231", "children": [ { "text": "https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC087iC02p01231", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ".{/ref}", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "text": "The table below provides a summary (from the ", "spanType": "span-simple-text" }, { "url": "https://www.ngdc.noaa.gov/nndc/DescribeField.jsp?dataset=102557&s=77&field_name=HAZ.VOLCANO_EVENT.VEI", "children": [ { "text": "NOAA's National Geophysical Data Center", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ") of the characteristics of eruptions of different VEI values. A 'Significant Volcanic Eruption' is often defined as an eruption with a VEI value of 6 or greater.\u00a0Historic eruptions that were definitely explosive, but carry no other descriptive information are assigned a default VEI of 2.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "html", "value": "<div class=\"raw-html-table__container\"><table><thead><tr><th scope=\"col\" colspan=\"1\">Volcanic Explosivity Index (VEI)</th><th scope=\"col\" colspan=\"1\">General description</th><th scope=\"col\" colspan=\"1\">Cloud Column Height (km)</th><th scope=\"col\" colspan=\"1\">Volume (m\u00b3)</th><th scope=\"col\" colspan=\"1\">Qualititative Description</th><th scope=\"col\" colspan=\"1\">Classification</th><th scope=\"col\" colspan=\"1\">How frequent?</th><th scope=\"col\" colspan=\"1\">Example</th></tr></thead><tbody><tr><td colspan=\"1\" rowspan=\"1\">0</td><td colspan=\"1\" rowspan=\"1\">Non-explosive</td><td colspan=\"1\" rowspan=\"1\">< 0.1 km</td><td colspan=\"1\" rowspan=\"1\">1x10\u2074</td><td colspan=\"1\" rowspan=\"1\">Gentle</td><td colspan=\"1\" rowspan=\"1\">Hawaiian</td><td colspan=\"1\" rowspan=\"1\">daily</td><td colspan=\"1\" rowspan=\"1\">Kilauea</td></tr><tr><td colspan=\"1\" rowspan=\"1\">1</td><td colspan=\"1\" rowspan=\"1\">Small</td><td colspan=\"1\" rowspan=\"1\">0.1 - 1 km</td><td colspan=\"1\" rowspan=\"1\">1x10\u2076</td><td colspan=\"1\" rowspan=\"1\">Effusive</td><td colspan=\"1\" rowspan=\"1\">Haw/Strombolian</td><td colspan=\"1\" rowspan=\"1\">daily</td><td colspan=\"1\" rowspan=\"1\">Stromboli</td></tr><tr><td colspan=\"1\" rowspan=\"1\">2</td><td colspan=\"1\" rowspan=\"1\">Moderate</td><td colspan=\"1\" rowspan=\"1\">1 - 5 km</td><td colspan=\"1\" rowspan=\"1\">1x10\u2077</td><td colspan=\"1\" rowspan=\"1\">Explosive</td><td colspan=\"1\" rowspan=\"1\">Strom/Vulcanian</td><td colspan=\"1\" rowspan=\"1\">weekly</td><td colspan=\"1\" rowspan=\"1\">Galeras, 1992</td></tr><tr><td colspan=\"1\" rowspan=\"1\">3</td><td colspan=\"1\" rowspan=\"1\">Moderate-Large</td><td colspan=\"1\" rowspan=\"1\">3 - 15 km</td><td colspan=\"1\" rowspan=\"1\">1x10\u2078</td><td colspan=\"1\" rowspan=\"1\">Explosive</td><td colspan=\"1\" rowspan=\"1\">Vulcanian</td><td colspan=\"1\" rowspan=\"1\">annually</td><td colspan=\"1\" rowspan=\"1\">Ruiz, 1985</td></tr><tr><td colspan=\"1\" rowspan=\"1\">4</td><td colspan=\"1\" rowspan=\"1\">Large</td><td colspan=\"1\" rowspan=\"1\">10 - 25 km</td><td colspan=\"1\" rowspan=\"1\">1x10\u2079</td><td colspan=\"1\" rowspan=\"1\">Explosive</td><td colspan=\"1\" rowspan=\"1\">Vulc/Plinian</td><td colspan=\"1\" rowspan=\"1\">10's of years</td><td colspan=\"1\" rowspan=\"1\">Galunggung, 1982</td></tr><tr><td colspan=\"1\" rowspan=\"1\">5</td><td colspan=\"1\" rowspan=\"1\">Very Large</td><td colspan=\"1\" rowspan=\"1\">> 25 km</td><td colspan=\"1\" rowspan=\"1\">1x10\u00b9\u2070</td><td colspan=\"1\" rowspan=\"1\">Cataclysmic</td><td colspan=\"1\" rowspan=\"1\">Plinian</td><td colspan=\"1\" rowspan=\"1\">100's of years</td><td colspan=\"1\" rowspan=\"1\">St. Helens, 1981</td></tr><tr><td colspan=\"1\" rowspan=\"1\">6</td><td colspan=\"1\" rowspan=\"1\"></td><td colspan=\"1\" rowspan=\"1\">> 25 km</td><td colspan=\"1\" rowspan=\"1\">1x10\u00b9\u00b9</td><td colspan=\"1\" rowspan=\"1\">Paroxysmal</td><td colspan=\"1\" rowspan=\"1\">Plin/Ultra-Plinian</td><td colspan=\"1\" rowspan=\"1\">100's of years</td><td colspan=\"1\" rowspan=\"1\">Krakatau, 1883</td></tr><tr><td colspan=\"1\" rowspan=\"1\">7</td><td colspan=\"1\" rowspan=\"1\"></td><td colspan=\"1\" rowspan=\"1\">> 25 km</td><td colspan=\"1\" rowspan=\"1\">1x10\u00b9\u00b2</td><td colspan=\"1\" rowspan=\"1\">Colossal</td><td colspan=\"1\" rowspan=\"1\">Ultra-Plinian</td><td colspan=\"1\" rowspan=\"1\">1000's of years</td><td colspan=\"1\" rowspan=\"1\">Tambora, 1815</td></tr><tr><td colspan=\"1\" rowspan=\"1\">8</td><td colspan=\"1\" rowspan=\"1\"></td><td colspan=\"1\" rowspan=\"1\">> 25 km</td><td colspan=\"1\" rowspan=\"1\">>1x10\u00b9\u00b2</td><td colspan=\"1\" rowspan=\"1\">Colossal</td><td colspan=\"1\" rowspan=\"1\">Ultra-Plinian</td><td colspan=\"1\" rowspan=\"1\">10,000's of years</td><td colspan=\"1\" rowspan=\"1\">Yellowstone, 2 Ma</td></tr></tbody></table></div>", "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Data Quality", "spanType": "span-simple-text" } ], "type": "heading", "level": 1, "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Number of reported disaster events", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "A key issue of data quality is the consistency of even reporting over time. For long-term trends in natural disaster events we know that reporting and recording of events today is much more advanced and complete than in the past. This can lead to significant underreporting or uncertainty of events in the distant past.", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "In the chart here we show data on the number of ", "spanType": "span-simple-text" }, { "children": [ { "text": "reported", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": " natural disasters over time. ", "spanType": "span-simple-text" }, { "spanType": "span-newline" }, { "spanType": "span-newline" }, { "text": "This change over time can be influenced by a number of factors, namely the increased coverage of reporting over time. The increase over time is therefore not directly reflective of the ", "spanType": "span-simple-text" }, { "children": [ { "text": "actual", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": " trend in disaster events.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/number-of-natural-disaster-events", "type": "chart", "parseErrors": [] }, { "text": [ { "text": "Number of reported disasters by type", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "This same data is shown here as the number of ", "spanType": "span-simple-text" }, { "children": [ { "text": "reported", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": " disaster events by type. Again, the incompleteness of historical data can lead to significant underreporting in the past. The increase over time is therefore not directly reflective of the ", "spanType": "span-simple-text" }, { "children": [ { "text": "actual", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": " trend in disaster events.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "url": "https://ourworldindata.org/grapher/natural-disasters-by-type", "type": "chart", "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "text": [ { "text": "Data Sources", "spanType": "span-simple-text" } ], "type": "heading", "level": 1, "parseErrors": [] }, { "type": "horizontal-rule", "parseErrors": [] }, { "type": "text", "value": [ { "text": "Wikipedia has several lists of disasters, and an overview of these lists can be found at ", "spanType": "span-simple-text" }, { "url": "http://en.wikipedia.org/wiki/Lists_of_disasters", "children": [ { "text": "List of Disasters", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ".", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "text": [ { "text": "Deaths from natural disasters", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "text": [ { "text": "Institute for Health Metrics and Evaluation (IHME), Global Burden of Disease", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0IHME provides data on deaths and death rates from natural disasters", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Global \u2013 country and regional level", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a01990 onwards", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "url": "http://www.emdat.be/", "children": [ { "text": "IHME, GBD", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "Multiple Types of Disasters", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "text": [ { "text": "EM-DAT \u2013 The International Disaster Database", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0EM-DAT is a catalogue of disasters listing detailed information on natural disasters: droughts (famines), earthquakes, epidemics, extreme temperatures, floods, insect infestations, mass movement (dry & wet), storms, volcanos, and wildfires. There is also a data section on technological disasters.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Global \u2013 country and regional level (primarily cross-country data set, but also contains the name of the sub-national regions affected by disasters)", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a01900 onwards", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "url": "http://www.emdat.be", "children": [ { "text": "EM-DAT", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Raw data has to be requested but the ", "spanType": "span-simple-text" }, { "url": "http://web.archive.org/web/20150829055006/http://www.emdat.be:80/disaster-trends", "children": [ { "text": "section on disaster trends", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " encompasses a number of visualizations (time series and maps).", "spanType": "span-simple-text" }, { "spanType": "span-newline" } ], "spanType": "span-italic" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "EM-DAT is maintained by the ", "spanType": "span-simple-text" }, { "url": "https://web.archive.org/web/20190922043847/https://www.cred.be/", "children": [ { "text": "Center for Research on the Epidemiology of Disasters (CRED)", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "spanType": "span-newline" } ], "spanType": "span-italic" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "EM-DAT data on the annual number of deaths and number of affected by drought, epidemics, earthquakes, extreme temperature, flood, storm, tsunami, plane crash by country is available at ", "spanType": "span-simple-text" }, { "children": [ { "text": "Gapminder", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": ".", "spanType": "span-simple-text" } ], "spanType": "span-italic" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "Earth Observatory by NASA \u2013 Natural Hazards", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " Up to date information and satellite images on fires, storms, floods, volcanoes, earthquakes, and droughts", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " Global", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " Recent years \u2013 very up to date", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "url": "http://earthobservatory.nasa.gov/NaturalHazards/", "children": [ { "text": "earthobservatory.nasa.gov/NaturalHazards", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "Natural Hazards Data \u2013 U.S. National Oceanic and Atmospheric Administration's National Geophysical Data Center (NGDC)", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Data and maps on many natural hazards including cyclones, tsunamis, earthquakes, volcanoes, and wildfires. It includes the 'Global Significant Earthquake Database, 2150 B.C. to present' (5500 events) and 'The Significant Volcanic Eruption Database' and \u2018Global Historical Tsunami Events and Runups\u2019 among many other datasets.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Global \u2013 exact location", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Millennia", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Online ", "spanType": "span-simple-text" }, { "url": "http://www.ngdc.noaa.gov/hazard/hazards.shtml", "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Download maps as pdf or ArcIMS interactive maps, and data in tab-delimited data files or html.", "spanType": "span-simple-text" } ], "spanType": "span-italic" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "Global Risk Data Platform", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Spatial data on tropical cyclones and related storm surges, drought, earthquakes, biomass fires, floods, landslides, tsunamis and volcanic eruptions.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " Global", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " Recent past", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " The website can be found ", "spanType": "span-simple-text" }, { "url": "http://preview.grid.unep.ch", "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ".", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Users can visualize, download or extract data on past hazardous events, human & economical hazard exposure and risk from natural hazards.", "spanType": "span-simple-text" } ], "spanType": "span-italic" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "Socioeconomic Data and Applications Center (SEDAC) \u2013 by NASA", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data: ", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "Maps of natural hazards", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage: ", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "Global", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span: ", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "Recent years", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at: ", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "Online ", "spanType": "span-simple-text" }, { "url": "http://sedac.ciesin.columbia.edu/data/sets/browse?facets=theme:hazards", "children": [ { "text": "here at the SEDAC website at Colombia University", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "children": [ { "spanType": "span-newline" } ], "spanType": "span-bold" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "Center for Hazards & Risk Research at Columbia University", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Hotspots:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " Risk levels calculated by combining hazard exposure with historical vulnerability for two indicators of elements at risk\u2014gridded population and Gross Domestic Product (GDP) per unit area\u2014for six major natural hazards: earthquakes, volcanoes, landslides, floods, drought, and cyclones", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Natural disaster profiles:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " Profiles for 13 countries provide information on sub-national areas at risk from natural hazards including cyclones, droughts, earthquakes, volcanoes, floods, and landslides.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage: ", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "Global for hotspots data", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span: ", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "Recent past", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at: ", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "Online ", "spanType": "span-simple-text" }, { "url": "http://www.ldeo.columbia.edu/chrr/research/profiles/", "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "children": [ { "spanType": "span-newline" } ], "spanType": "span-bold" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "\u00a0Earthquakes", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "text": [ { "text": "Global Earthquake Model (GEM)", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " GEM Global Historical Earthquake Catalogue (1000-1900) and the\u00a0ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009)", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "Global", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span: ", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "1000 onwards", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at: ", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "Online ", "spanType": "span-simple-text" }, { "url": "http://web.archive.org/web/20130106062157/http://www.globalquakemodel.org:80/risk-global-components/exposure-database", "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "children": [ { "spanType": "span-newline" } ], "spanType": "span-bold" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "Fire", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "text": [ { "text": "ATSR World Fire Atlas \u2013 by the European Space Agency (ESA)", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data:\u00a0", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "Monthly global fire maps", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage: ", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "Global", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a01995 onwards", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at: ", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "Online at the website of ESA ", "spanType": "span-simple-text" }, { "url": "http://due.esrin.esa.int/page_wfa.php", "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "children": [ { "spanType": "span-newline" } ], "spanType": "span-bold" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "Tsunami", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "text": "The ", "spanType": "span-simple-text" }, { "children": [ { "text": "Center for International Earth Science Information Network", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " at the Earth Institute at Columbia University publishes data on the ", "spanType": "span-simple-text" }, { "url": "http://www.ciesin.columbia.edu/tsunami2004.html", "children": [ { "text": "Population Affected by the Indian Ocean Tsunami", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "children": [ { "text": "(December 2004)", "spanType": "span-simple-text" } ], "spanType": "span-italic" }, { "text": ".", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "text": [ { "text": "Floods", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Wikipedia", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " has a ", "spanType": "span-simple-text" }, { "url": "http://en.wikipedia.org/wiki/List_of_deadliest_floods", "children": [ { "text": "List of Deadliest Floods", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": " and a ", "spanType": "span-simple-text" }, { "url": "http://en.wikipedia.org/wiki/List_of_floods", "children": [ { "text": "List of Floods", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ".", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "text": [ { "text": "Hurricanes", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "text": [ { "text": "Unisys Data on Hurricanes", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Data on the track of the storm plus a text-based table of tracking information. The table includes position in latitude and longitude, maximum sustained winds in knots, and central pressure in millibars.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Atlantic, East Pacific, West Pacific, South Pacific, South Indian, and North Indian", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a01851 until now", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Online ", "spanType": "span-simple-text" }, { "url": "http://weather.unisys.com/hurricanes", "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "children": [ { "text": "\u00a0This data set was used by Dean Yang (2008) \u2013 Coping with Disaster: The Impact of Hurricanes on International Financial Flows, 1970-2002. The B.E. Journal of Economic Analysis & Policy. Volume 8, Issue 1, ISSN (Online) 1935-1682, DOI: 10.2202/1935-1682.1903, June 2008. Online ", "spanType": "span-simple-text" }, { "url": "http://www.degruyter.com/view/j/bejeap.2008.8.1/bejeap.2008.8.1.1903/bejeap.2008.8.1.1903.xml?format=INT", "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-link" }, { "text": ".", "spanType": "span-simple-text" } ], "spanType": "span-italic" } ], "spanType": "span-italic" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "National Climatic Data Center (NOAA)", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Data on the track of storms", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " Global", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a01848 until now", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Online at ", "spanType": "span-simple-text" }, { "url": "http://www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data", "children": [ { "text": "NOAA here", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "Volcanoes", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "text": [ { "text": "National Geophysical Data Center (NGDC)", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0 Global listing of over 500 significant eruptions which includes information on the latitude, longitude, elevation, type of volcano, and last known eruption.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Global", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a01750BC onwards", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Online at the ", "spanType": "span-simple-text" }, { "url": "https://www.ngdc.noaa.gov/nndc/servlet/ShowDatasets?dataset=102557&search_look=50&display_look=50", "children": [ { "text": "Significant Volcanic Eruption Database.", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "Smithsonian Institution's Global Volcanism Program (GVP)", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Complete list of current and past activity for all volcanoes on the planet active during the last 10,000 years. Data includes eruption type, maximum Volcanic Explosivity Index, start and end dates (when known), and the type of evidence for the eruption.", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": " Global", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Past 10,000 years to present day", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Online at ", "spanType": "span-simple-text" }, { "url": "http://volcano.si.edu/search_eruption.cfm##", "children": [ { "text": "the Volcanoes of the World Database", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Full reference:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Global Volcanism Program, 2013. Volcanoes of the World, v. 4.7.3. Venzke, E (ed.). Smithsonian Institution. https://doi.org/10.5479/si.GVP.VOTW4-2013", "spanType": "span-simple-text" } ], "parseErrors": [] } ], "parseErrors": [] }, { "text": [ { "text": "Lightning", "spanType": "span-simple-text" } ], "type": "heading", "level": 3, "parseErrors": [] }, { "text": [ { "text": "Lightning Maps", "spanType": "span-simple-text" } ], "type": "heading", "level": 4, "parseErrors": [] }, { "type": "list", "items": [ { "type": "text", "value": [ { "children": [ { "text": "Data:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Real-time tracking of lightning strikes", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Geographical coverage:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Global", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Time span:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Real-time", "spanType": "span-simple-text" } ], "parseErrors": [] }, { "type": "text", "value": [ { "children": [ { "text": "Available at:", "spanType": "span-simple-text" } ], "spanType": "span-bold" }, { "text": "\u00a0Online ", "spanType": "span-simple-text" }, { "url": "http://www.lightningmaps.org/#m=oss;t=3;s=0;o=0;b=;ts=0;", "children": [ { "text": "here", "spanType": "span-simple-text" } ], "spanType": "span-link" } ], "parseErrors": [] } ], "parseErrors": [] }, { "top": [], "type": "all-charts", "heading": "Interactive charts on natural disasters", "parseErrors": [] } ], "type": "linear-topic-page", "title": "Natural Disasters", "authors": [ "Hannah Ritchie", "Pablo Rosado", "Max Roser" ], "excerpt": "Where and from which disasters do people die? What can we do to prevent deaths from natural disasters?", "dateline": "December 7, 2022", "subtitle": "Where and from which disasters do people die? What can we do to prevent deaths from natural disasters?", "sticky-nav": [], "sidebar-toc": true, "featured-image": "Annual-deaths-by-natural-disaster.png" }, "createdAt": "2019-11-08T07:03:40.000Z", "published": false, "updatedAt": "2023-11-08T15:57:23.000Z", "revisionId": null, "publishedAt": "2022-12-07T08:30:00.000Z", "relatedCharts": [ { "slug": "ace-north-atlantic-hurricanes", "title": "Accumulated cyclone energy of North Atlantic hurricanes", "variantName": null, "keyChartLevel": 2 }, { "slug": "countries-with-legislative-regulatory-provisions-for-managing-disaster-risk", "title": "Adoption and implementation of policies to reduce disaster risk", "variantName": null, "keyChartLevel": 2 }, { "slug": "heat-wave-index-usa", "title": "Annual Heat Wave Index in the United States", "variantName": null, "keyChartLevel": 2 }, { "slug": "hurricane-track-error", "title": "Atlantic hurricane and tropical cyclone track error", "variantName": null, "keyChartLevel": 2 }, { "slug": "acres-burned-per-wildfire-usa", "title": "Average acres burned per wildfire in the United States", "variantName": null, "keyChartLevel": 2 }, { "slug": "death-rate-from-natural-disasters", "title": "Death rate from natural disasters", "variantName": "WHO", "keyChartLevel": 2 }, { "slug": "death-rate-from-natural-disasters-gbd", "title": "Death rate from natural disasters", "variantName": "IHME, age-standardized", "keyChartLevel": 2 }, { "slug": "death-rates-from-disasters", "title": "Death rate from natural disasters", "variantName": "IHME, crude", "keyChartLevel": 2 }, { "slug": "death-rates-from-natural-disasters", "title": "Death rates from natural disasters", "variantName": null, "keyChartLevel": 2 }, { "slug": "earthquake-deaths", "title": "Deaths from earthquakes", "variantName": null, "keyChartLevel": 2 }, { "slug": "deaths-from-natural-disasters", "title": "Deaths from natural disasters", "variantName": null, "keyChartLevel": 0 }, { "slug": "decadal-average-death-rates-from-natural-disasters", "title": "Decadal average: Death rates from natural disasters", "variantName": null, "keyChartLevel": 2 }, { "slug": "decadal-economic-disasters-type", "title": "Decadal average: Economic damages from disasters as a share of GDP", "variantName": null, "keyChartLevel": 2 }, { "slug": "decadal-deaths-disasters-type", "title": "Decadal average: Number of deaths from natural disasters", "variantName": null, "keyChartLevel": 2 }, { "slug": "direct-disaster-economic-loss", "title": "Direct disaster economic loss", "variantName": null, "keyChartLevel": 2 }, { "slug": "direct-economic-loss-attributed-to-disasters", "title": "Direct economic loss attributed to disasters", "variantName": null, "keyChartLevel": 2 }, { "slug": "direct-disaster-loss-as-a-share-of-gdp", "title": "Direct economic loss from disasters as a share of GDP", "variantName": null, "keyChartLevel": 2 }, { "slug": "disaster-risk-reduction-progress", "title": "Disaster risk reduction progress score", "variantName": null, "keyChartLevel": 2 }, { "slug": "drought-severity-index-us", "title": "Drought severity index", "variantName": null, "keyChartLevel": 2 }, { "slug": "economic-damage-from-natural-disasters", "title": "Economic damage by natural disaster type", "variantName": null, "keyChartLevel": 2 }, { "slug": "economic-damages-from-natural-disasters-as-a-share-of-gdp", "title": "Economic damages from disasters as a share of GDP", "variantName": null, "keyChartLevel": 2 }, { "slug": "fatality-rates-due-to-lightning-in-the-us", "title": "Fatality rates due to lightning in the US", "variantName": null, "keyChartLevel": 2 }, { "slug": "fatality-rates-in-the-us-due-to-weather-events", "title": "Fatality rates in the US due to weather events", "variantName": null, "keyChartLevel": 2 }, { "slug": "frequency-north-atlantic-hurricanes", "title": "Frequency of North Atlantic hurricanes", "variantName": null, "keyChartLevel": 2 }, { "slug": "damage-costs-from-natural-disasters", "title": "Global damage costs from natural disasters", "variantName": null, "keyChartLevel": 2 }, { "slug": "number-injured-from-disasters", "title": "Global injuries from natural disasters", "variantName": null, "keyChartLevel": 2 }, { "slug": "natural-disaster-death-rates", "title": "Global natural disaster death rates", "variantName": null, "keyChartLevel": 2 }, { "slug": "global-precipitation-anomaly", "title": "Global precipitation anomaly", "variantName": null, "keyChartLevel": 2 }, { "slug": "natural-disasters-by-type", "title": "Global reported natural disasters by type", "variantName": null, "keyChartLevel": 2 }, { "slug": "weather-losses-share-gdp", "title": "Global weather disaster losses as a share of GDP", "variantName": null, "keyChartLevel": 2 }, { "slug": "how-many-deaths-does-it-take-for-a-disaster-in-different-continents-to-receive-news-coverage", "title": "How many deaths does it take for a disaster in different continents to receive news coverage?", "variantName": null, "keyChartLevel": 2 }, { "slug": "how-many-deaths-does-it-take-for-a-disaster-to-receive-news-coverage", "title": "How many deaths does it take for a disaster to receive news coverage?", "variantName": null, "keyChartLevel": 2 }, { "slug": "hurricane-landfalls-us", "title": "Hurricane landfalls in the United States", "variantName": null, "keyChartLevel": 2 }, { "slug": "near-earth-asteroids-discovered-over-time", "title": "Near-Earth asteroids discovered over time", "variantName": null, "keyChartLevel": 2 }, { "slug": "news-coverage-of-disasters", "title": "News coverage of disasters", "variantName": null, "keyChartLevel": 2 }, { "slug": "news-coverage-of-disasters-by-continent", "title": "News coverage of disasters, by continent", "variantName": null, "keyChartLevel": 2 }, { "slug": "number-of-deaths-from-natural-disasters", "title": "Number of deaths from natural disasters", "variantName": "EM-DAT", "keyChartLevel": 2 }, { "slug": "natural-disaster-deaths-ihme", "title": "Number of deaths from natural disasters", "variantName": "IHME", "keyChartLevel": 2 }, { "slug": "deaths-from-natural-disasters-by-type", "title": "Number of deaths from natural disasters by type", "variantName": null, "keyChartLevel": 2 }, { "slug": "deaths-from-volcanic-eruptions", "title": "Number of deaths from volcanic eruptions", "variantName": null, "keyChartLevel": 2 }, { "slug": "local-govts-risk-reduction", "title": "Number of local governments with disaster risk reduction strategies", "variantName": null, "keyChartLevel": 2 }, { "slug": "number-of-natural-disaster-events", "title": "Number of recorded natural disaster events", "variantName": null, "keyChartLevel": 2 }, { "slug": "significant-volcanic-eruptions", "title": "Number of significant volcanic eruptions", "variantName": null, "keyChartLevel": 2 }, { "slug": "wildfire-numbers-usa", "title": "Number of wildfires in the United States", "variantName": null, "keyChartLevel": 2 }, { "slug": "total-affected-by-natural-disasters", "title": "People affected by natural disasters", "variantName": null, "keyChartLevel": 2 }, { "slug": "internally-displaced-persons-from-disasters", "title": "People displaced internally by natural disasters", "variantName": null, "keyChartLevel": 2 }, { "slug": "number-homeless-from-natural-disasters", "title": "People left homeless from natural disasters", "variantName": null, "keyChartLevel": 2 }, { "slug": "cyclone-power-dissipation-index", "title": "Power Dissipation Index (PDI) of North Atlantic cyclones", "variantName": null, "keyChartLevel": 2 }, { "slug": "precipitation-anomaly", "title": "Precipitation anomaly in the United States", "variantName": null, "keyChartLevel": 2 }, { "slug": "deaths-and-missing-persons-due-to-natural-disasters", "title": "Rate of deaths and missing persons due to natural disasters", "variantName": null, "keyChartLevel": 2 }, { "slug": "legislative-provisions-for-managing-disaster-risk", "title": "Score of adoption and implementation of national strategies for managing disaster risk", "variantName": null, "keyChartLevel": 2 }, { "slug": "extreme-one-day-precipitation-usa", "title": "Share of US land area that experienced extreme one-day precipitation", "variantName": null, "keyChartLevel": 2 }, { "slug": "unusually-high-precipitation-usa", "title": "Share of US land area with unusually high annual precipitation", "variantName": null, "keyChartLevel": 2 }, { "slug": "high-summer-temp-usa", "title": "Share of US land area with unusually high summer temperatures", "variantName": null, "keyChartLevel": 2 }, { "slug": "low-winter-temps-usa", "title": "Share of US land area with unusually low winter temperatures", "variantName": null, "keyChartLevel": 2 }, { "slug": "share-deaths-from-natural-disasters", "title": "Share of deaths from natural disasters", "variantName": null, "keyChartLevel": 2 }, { "slug": "disaster-events-missing-data", "title": "Share of disaster events with missing data", "variantName": null, "keyChartLevel": 0 }, { "slug": "local-gov-disaster-strategies", "title": "Share of local governments that adopted and implemented local disaster risk reduction strategies in line with national strategies", "variantName": null, "keyChartLevel": 2 }, { "slug": "significant-earthquakes", "title": "Significant earthquakes per year", "variantName": null, "keyChartLevel": 2 }, { "slug": "weather-forecast-spending", "title": "Spending on commercial weather and climate forecasting and information services", "variantName": null, "keyChartLevel": 2 }, { "slug": "acres-burned-usa", "title": "Wildfire acres burned in the United States", "variantName": null, "keyChartLevel": 2 } ], "publicationContext": "listed" } |
{ "errors": [ { "name": "unhandled html tag found", "details": "Encountered the unhandled tag hr" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag separator" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag image" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag image" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag shortcode" }, { "name": "too many figcaption elements after archieml transform", "details": "Found 9 elements after transforming to archieml" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag image" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag quote" }, { "name": "too many figcaption elements after archieml transform", "details": "Found 7 elements after transforming to archieml" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag image" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag shortcode" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag shortcode" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" }, { "name": "unexpected wp component tag", "details": "Found unhandled wp:comment tag list" } ], "numBlocks": 263, "numErrors": 28, "wpTagCounts": { "html": 35, "list": 17, "image": 4, "quote": 1, "column": 2, "columns": 1, "heading": 70, "paragraph": 109, "separator": 1, "shortcode": 3, "owid/summary": 1 }, "htmlTagCounts": { "p": 110, "h2": 11, "h3": 14, "h4": 31, "h5": 14, "hr": 1, "ul": 17, "div": 6, "table": 3, "figure": 28, "iframe": 35, "blockquote": 1, "figcaption": 2 } } |
2022-12-07 08:30:00 | 2024-03-19 18:38:05 | [ "Hannah Ritchie", "Pablo Rosado" ] |
Where and from which disasters do people die? What can we do to prevent deaths from natural disasters? | 2019-11-08 07:03:40 | 2023-11-08 15:57:23 | https://ourworldindata.org/wp-content/uploads/2019/11/Annual-deaths-by-natural-disaster.png | {} |
Natural disasters – from earthquakes and floods to storms and droughts – affect millions of people every year. However, we are not defenseless against them, and the global death toll, especially from droughts and floods, has been reduced. While natural disasters account for a small fraction of [all deaths globally](https://ourworldindata.org/causes-of-death), they can have a large impact, especially on vulnerable populations in low-to-middle-income countries with insufficient infrastructure to protect and respond effectively. Understanding the frequency, intensity, and impact of natural disasters is crucial if we want to be better prepared and protect people’s lives and livelihoods. On this page, you will find our complete collection of data, charts, and research on natural disasters and their human and economic costs. <Chart url="https://ourworldindata.org/explorers/natural-disasters?facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL"/> → [Open the Data Explorer](https://ourworldindata.org/explorers/natural-disasters) in a new tab. **[See all interactive charts on natural disasters ↓](#all-charts)** --- # Natural disasters kill tens of thousands each year --- The number of deaths from natural disasters can be highly variable from year-to-year; some years pass with very few deaths before a large disaster event claims many lives. If we look at the average over the past decade, approximately 45,000 people globally died from natural disasters each year. This represents around 0.1% of global deaths. In the visualizations shown here we see the annual variability in the number and share of deaths from natural disasters in recent decades. What we see is that in many years, the number of deaths can be very low – often less than 10,000, and accounting for as low as 0.01% of total deaths. But we also see the devastating impact of shock events: the 1983-85 [famine](https://owid.cloud/famines) and drought in Ethiopia; the [2004 Indian Ocean earthquake and tsunami](https://en.wikipedia.org/wiki/2004_Indian_Ocean_earthquake_and_tsunami); [Cyclone Nargis](https://en.wikipedia.org/wiki/Cyclone_Nargis) which struck Myanmar in 2008; and the [2010 Port-au-Prince earthquake](https://en.wikipedia.org/wiki/2010_Haiti_earthquake) in Haiti. All of these events pushed global disasters deaths over 200,000 – more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. We know from historical data that the world has seen a significant reduction in disaster deaths through earlier prediction, more resilient infrastructure, emergency preparedness, and response systems. Those at low incomes are often the most vulnerable to disaster events: improving living standards, infrastructure and response systems in these regions will be key to preventing deaths from natural disasters in the coming decades. <Chart url="https://ourworldindata.org/explorers/natural-disasters?time=1978..latest&facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=false&country=~OWID_WRL&hideControls=true"/> <Chart url="https://ourworldindata.org/grapher/share-deaths-from-natural-disasters?tab=chart"/> --- # What share of deaths are from natural disasters? --- Globally, over the past decade, natural disasters accounted for an average of 0.1% of total deaths. This was, however, highly variable to high-impact events and ranged from 0.01% to 0.4% of total deaths. In the map shown here you can explore these trends by country over the past few decades. Using the timeline on the chart you can observe changes across the world over time, or by clicking on a country you can see its individual trend. What we observe is that for most countries the share of deaths from natural disasters are very low in most years. Often it can be zero – with no loss of life to disasters – or well below 0.01%. But we also see clearly the effects of low-frequency but high-impact events: in 2010, more than 70% of deaths in Haiti were the result of the [Port-au-Prince earthquake](https://en.wikipedia.org/wiki/2010_Haiti_earthquake). <Chart url="https://ourworldindata.org/grapher/share-deaths-from-natural-disasters"/> --- # Number of deaths from natural disasters --- ## Annual deaths from natural disasters In the visualization shown here we see the long-term global trend in natural disaster deaths. This shows the estimated annual number of deaths from disasters from 1900 onwards from the [EMDAT International Disaster Database](https://www.emdat.be/).{ref}EMDAT (2019): OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium{/ref} What we see is that in the early-to-mid 20th century, the annual death toll from disasters was high, often reaching over one million per year. In recent decades we have seen a substantial decline in deaths. In most years fewer than 20,000 die (and in the most recent decade, this has often been less than 10,000). Even in peak years with high-impact events, the death toll has not exceeded 500,000 since the mid-1960s. This decline is even more impressive when we consider the rate of [population growth](https://owid.cloud/world-population-growth) over this period. When we correct for population – showing this data in terms of death rates (measured per 100,000 people) – we see an even greater decline over the past century. This chart can be viewed **[here](https://ourworldindata.org/explorers/natural-disasters?facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=true&country=~OWID_WRL)**. The annual number of deaths from natural disasters is also available by country since 1990. This can be explored in the interactive map. <Chart url="https://ourworldindata.org/explorers/natural-disasters?facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=false&country=~OWID_WRL&hideControls=true"/> <Chart url="https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=false&country=~OWID_WRL&hideControls=true"/> ## Average number of deaths by decade In the chart we show global deaths from natural disasters since 1900, but rather than reporting annual deaths, we show the annual average by decade. As we see, over the course of the 20th century there was a significant decline in global deaths from natural disasters. In the early 1900s, the annual average was often in the range of 400,000 to 500,000 deaths. In the second half of the century and into the early 2000s, we have seen a significant decline to less than 100,000 – at least five times lower than these peaks. This decline is even more impressive when we consider the rate of [population growth](https://owid.cloud/world-population-growth) over this period. When we correct for population – showing this data in terms of death rates (measured per 100,000 people) – then we see a more than 10-fold decline over the past century. This chart can be viewed [**here**](https://ourworldindata.org/grapher/decadal-average-death-rates-from-natural-disasters?country=~OWID_WRL). <Chart url="https://ourworldindata.org/grapher/decadal-deaths-disasters-type?country=OWID_WRL~"/> ## Number of deaths by type of natural disaster With almost minute-by-minute updates on what’s happening in the world, we are constantly reminded of the latest disaster. These stories are, of course, important but they do not give us a sense of how the toll of disasters has changed over time. For most of us, it is hard to know whether any given year was a particularly deadly one in the context of previous years. To understand the devastating toll of disasters today, and in the past, we have built a [Natural Disasters Data Explorer](http://ourworldindata.org/explorers/natural-disasters) which provides estimates of fatalities, displacement and economic damage for every country since 1900. This is based on data sourced from EM-DAT; a project that undertakes the important work of building these incredibly detailed histories of disasters.{ref}EM-DAT, CRED / UCLouvain, Brussels, Belgium – [www.emdat.be](http://www.emdat.be) (D. Guha-Sapir){/ref} In this visualization I give a sense of how the global picture has evolved over the last century. It shows the estimated annual death toll – from all disasters at the top, followed by a breakdown by type. The size of the bubble represents the total death toll for that year. I’ve labeled most of the years with the largest death tolls. This usually provokes the follow-up question: “Why? What event happened?”. So I’ve also noted large-scale events that contributed to the majority – _but not necessarily all _– of the deaths in that year. For example, the estimated global death toll from storms in 2008 was approximately 141,000. 138,366 of these deaths occurred in Cyclone Margis, which struck Myanmar, and is labeled on the chart. What we see is that in the 20th century, it was common to have years where the death toll was in the millions. This was usually the result of major droughts or floods. Often these would lead to famines. My colleague Joe Hasell looks at the long history of famines [**here**](http://ourworldindata.org/famines). Improved food security, resilience to other disasters, and better national and international responses mean that the world has not experienced death tolls of this scale in many decades. Famines today are usually driven by civil war and political unrest. In most years, the death toll from disasters is now in the range of 10,000 to 20,000 people. In the most fatal years – which tend to be those with major earthquakes or cyclones – this can reach tens to hundreds of thousands. This trend does not mean that disasters have become less frequent, or less intense. It means the world today is much better at _preventing deaths_ from disasters than in the past. This will become increasingly important in our response and adaptation to [climate change](http://ourworldindata.org/climate-change). <Image filename="Deaths-from-disasters-bubbles-1.png" alt=""/> --- # Injuries and displacement from disasters --- Human impacts from natural disasters are not fully captured in mortality rates. Injury, homelessness, and displacement can all have a significant impact on populations. The visualisation below shows the number of people displaced internally (i.e. within a given country) from natural disasters. Note that these figures report on the basis of new cases of displaced persons: if someone is forced to flee their home from natural disasters more than once in any given year, they will be recorded only once within these statistics. Interactive charts on the following global impacts are available using the links below: * **[Injuries](https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Injuries&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL)**: number of people injured is defined as "People suffering from physical injuries, trauma or an illness requiring immediate medical assistance as a direct result of a disaster." * **[Homelessness](https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Homeless&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL)**: number of people homeless is defined as "Number of people whose house is destroyed or heavily damaged and therefore need shelter after an event." * [**Affected**](https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Affected&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL): number of people affected is defined as "People requiring immediate assistance during a period of emergency, i.e. requiring basic survival needs such as food, water, shelter, sanitation and immediate medical assistance." * [**Total number affected**](https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Total+affected&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL): total number of people affected is defined as "the sum of the injured, affected and left homeless after a disaster." <Chart url="https://ourworldindata.org/grapher/internally-displaced-persons-from-disasters"/> --- # Natural disasters by type --- ## Earthquakes ### Earthquake events Earthquake events occur across the world every day. The US Geological Survey (USGS) tracks and reports global earthquakes, with (close to) real-time updates which you can **[find here](https://earthquake.usgs.gov/earthquakes/map/)**. However, the earthquakes which occur most frequently are often too small to cause significant damage (whether to human life, or in economic terms). In the chart below we show the long history of known earthquakes classified by the [National Geophysical Data Center (NGDC) of the NOAA](https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1) as 'significant' earthquakes. Significant earthquakes are those which are large enough to cause notable damage. They must meet at least one of the following criteria: caused deaths, moderate damage ($1 million or more), magnitude 7.5 or greater, Modified Mercalli Intensity (MMI) X or greater, or generated a tsunami. Available data — which you can explore in the chart below — extends back to 2150 BC. But we should be aware that most recent records will be much more complete than our long-run historic estimates. An increase in the number of recorded earthquakes doesn't necessarily mean this was the true trend over time. By clicking on a country in the map below, you can view it's full series of known significant earthquakes. <Chart url="https://ourworldindata.org/grapher/significant-earthquakes"/> ### Deaths from earthquakes Alongside estimates of the number of earthquake events, the National Geophysical Data Center (NGDC) of the NOAA also publish estimates of the number of deaths over this long-term series. In the chart below we see the estimated mortality numbers from 2000 BC through to 2017. These figures can be found for specific countries using the "change country" function in the bottom-left of the chart, or by selecting the "map" on the bottom-right. At the global level we see that earthquake deaths have been a persistent human risk through time. <Chart url="https://ourworldindata.org/grapher/earthquake-deaths"/> ### What were the world's deadliest earthquakes? The number of people dying in natural disasters is [lower today](https://ourworldindata.org/natural-disasters#number-of-deaths-from-natural-disasters) than it was in the past; the world has become more resilient. Earthquakes, however, can still claim a large number of lives. Whilst historically, floods, droughts, and epidemics dominated disaster deaths, a high annual death toll in recent years often results from a major earthquake and possibly a tsunami caused by them. Since 2000, the two peak years in annual death tolls (reaching hundreds of thousands) were 2004 and 2010. Earthquake deaths accounted for 93 percent and 69 percent of disaster deaths, respectively. Both events (the Sumatra earthquake and tsunami of 2004 and the Port-au-Prince earthquake in 2010) are in the deadliest earthquake rankings below. What have been the most deadly earthquakes in human history? In the visualization, we have mapped the top 10 rankings of known earthquakes, which resulted in the largest number of deaths.{ref}Since two events are ranked equally in 8th place, a total of 11 are included.{/ref} This ranking is based on mortality estimates from the NOAA's National Geophysical Data Center (NGDC).{ref}National Geophysical Data Center / World Data Service (NGDC/WDS): Significant Earthquake Database. National Geophysical Data Center, NOAA. Available at: [https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1](https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1).{/ref} Clicking on the visualization will open it in higher resolution. This ranking is also summarized in table form. The most deadly earthquake in history was in Shaanxi, China in 1556. It's estimated to have killed 830,000 people. This is more than twice that of the second most fatal: the recent Port-au-Prince earthquake in Haiti in 2010. It's reported that 316,000 people died as a result.{ref}The death toll of the Haitian earthquake is still disputed. Here, we present the adopted figure by the NGDC of the NOAA (for consistency with other earthquakes); this is the figure reported by the Haitian government. Some sources suggest a lower figure of 220,000. In the latter case, this event would fall to 7th place in the above rankings.{/ref} Two very recent earthquakes — the Sumatra earthquake and tsunami of 2004 and the 2010 Port-au-Prince earthquake — feature amongst the most deadly in human history. But equally, some of the most fatal occurred in the very distant past. The third deadliest was the earthquake in Antakya (Turkey) in 115 CE. Both old and very recent earthquakes feature near the top of the list. The deadly nature of earthquakes has been a persistent threat throughout our history. <Image filename="Deadliest-earthquakes.png" alt=""/> <div class="raw-html-table__container"><table><thead><tr><th scope="col" colspan="1">Ranking</th><th scope="col" colspan="1">Location</th><th scope="col" colspan="1">Year</th><th scope="col" colspan="1">Estimated death toll</th><th scope="col" colspan="1">Earthquake magnitude </th><th scope="col" colspan="1">Additional information</th></tr></thead><tbody><tr><td colspan="1" rowspan="1">1</td><td colspan="1" rowspan="1">Shaanxi, China</td><td colspan="1" rowspan="1">1556</td><td colspan="1" rowspan="1">830,000</td><td colspan="1" rowspan="1">8</td><td colspan="1" rowspan="1">More than <a href="https://en.wikipedia.org/wiki/1556_Shaanxi_earthquake">97 counties in China</a> were affected. A 520-mile wide area destroyed. In some counties it's estimated that up to 60% of the population died. Such catastrophic losses are attributed to loess cave settlements, which collapsed as a result.</td></tr><tr><td colspan="1" rowspan="1">2</td><td colspan="1" rowspan="1">Port-au-Prince, Haiti</td><td colspan="1" rowspan="1">2010</td><td colspan="1" rowspan="1">316,000</td><td colspan="1" rowspan="1">7</td><td colspan="1" rowspan="1">Death toll is still disputed. Here we present the adopted figure by the NGDC of the NOAA (for consistency with other earthquakes); this is the figure reported by the Haitian government. Some sources suggest a lower figure of 220,000. In the latter case, this event would fall to 7th place in the above rankings.</td></tr><tr><td colspan="1" rowspan="1">3</td><td colspan="1" rowspan="1">Antakya, Turkey</td><td colspan="1" rowspan="1">115</td><td colspan="1" rowspan="1">260,000</td><td colspan="1" rowspan="1">7.5</td><td colspan="1" rowspan="1">Antioch (ancient ruins which lie near the modern city Antakya) and surrounding areas suffered severe damage. Apamea was <a href="https://www.sciencedirect.com/science/article/pii/S0012821X03001444">also destroyed and Beirut suffered severe damage</a>. A local <a href="https://www.earth-prints.org/bitstream/2122/908/1/01Sbeinati.pdf">tsunami was triggered</a> causing damage to the coast of Lebanon.</td></tr><tr><td colspan="1" rowspan="1">4</td><td colspan="1" rowspan="1">Antakya, Turkey</td><td colspan="1" rowspan="1">525</td><td colspan="1" rowspan="1">250,000</td><td colspan="1" rowspan="1">7</td><td colspan="1" rowspan="1">Severe damage to the area of the Byzantine Empire. The earthquake caused severe damage to many buildings. However, severe damage was also <a href="https://www.earth-prints.org/bitstream/2122/908/1/01Sbeinati.pdf">caused by fires in the aftermath</a> combined with strong wind.</td></tr><tr><td colspan="1" rowspan="1">5</td><td colspan="1" rowspan="1">Tangshan, China</td><td colspan="1" rowspan="1">1976</td><td colspan="1" rowspan="1">242,769</td><td colspan="1" rowspan="1">7.5</td><td colspan="1" rowspan="1">Reported that the earthquake risk had been greatly underestimated meaning almost all buildings and structures were designed and built without seismic considerations. Estimated that <a href="https://authors.library.caltech.edu/26539/">up to 85% of buildings collapsed</a>. Tangshan therefore large comprised of <a href="https://www.nap.edu/login.php?record_id=19764">unreinforced brick buildings</a> which resulted in a large death toll.</td></tr><tr><td colspan="1" rowspan="1">6</td><td colspan="1" rowspan="1">Gyzndzha, Azerbaijan</td><td colspan="1" rowspan="1">1139</td><td colspan="1" rowspan="1">230,000</td><td colspan="1" rowspan="1">Unknown</td><td colspan="1" rowspan="1">Often <a href="https://www.seismology.az/en/stations/5#.W7aH-ZM-eL8">termed the Ganja earthquake</a>. Much less is documented on the specific details of this event.</td></tr><tr><td colspan="1" rowspan="1">7</td><td colspan="1" rowspan="1">Sumatra, Indonesia</td><td colspan="1" rowspan="1">2004</td><td colspan="1" rowspan="1">227,899</td><td colspan="1" rowspan="1">9.1</td><td colspan="1" rowspan="1">Earthquake in Indian Ocean off the coast of Sumatra resulted in a series of large tsunamis (<a href="https://soundwaves.usgs.gov/2005/03/">ranging 15 to 30 metres in height</a>). Victims across 14 countries in the regions with Indonesia being the hardest-hit, followed by Sri Lanka, India and Thailand. There was no tsunami warning system in place.</td></tr><tr><td colspan="1" rowspan="1">=8</td><td colspan="1" rowspan="1">Damghan, Iran</td><td colspan="1" rowspan="1">856</td><td colspan="1" rowspan="1">200,000</td><td colspan="1" rowspan="1">7.9</td><td colspan="1" rowspan="1">Estimated that <a href="https://en.wikipedia.org/wiki/856_Damghan_earthquake">extent of the damage area was 220 miles long</a>. It's also hypothesised that the ancient city of Šahr-e Qumis was so badly damaged that it was abandoned after the earthquake.</td></tr><tr><td colspan="1" rowspan="1">=8</td><td colspan="1" rowspan="1">Gansu, China</td><td colspan="1" rowspan="1">1920</td><td colspan="1" rowspan="1">200,000</td><td colspan="1" rowspan="1">8.3</td><td colspan="1" rowspan="1">Damage occurred <a href="https://en.wikipedia.org/wiki/1920_Haiyuan_earthquake">across 7 provinces and regions</a>. In some cities almost all buildings collapsed, or were buried by landslides. It was reported than additional deaths occurred due to cold exposure: fear from aftershocks meant survivors tried to rely only on temporary shelters which were unsuitable for the harsh winter.</td></tr><tr><td colspan="1" rowspan="1">9</td><td colspan="1" rowspan="1">Dvin, Armenia</td><td colspan="1" rowspan="1">893</td><td colspan="1" rowspan="1">150,000</td><td colspan="1" rowspan="1">Unknown</td><td colspan="1" rowspan="1">City of Dvin was destroyed, with the collapse of most buildings, defensive walls and palaces; <a href="https://www.earth-prints.org/bitstream/2122/1795/1/22%20hasrat'yan.pdf">estimated that only 100 buildings were left standing</a>. With its city defences ruined, Dvin was <a href="https://en.wikipedia.org/wiki/893_Dvin_earthquake">taken over and turned into a military base</a> by Muhammad ibn Abi'l-Saj, the Sajid emir of Adharbayjan.</td></tr><tr><td colspan="1" rowspan="1">10</td><td colspan="1" rowspan="1">Tokyo, Japan</td><td colspan="1" rowspan="1">1923</td><td colspan="1" rowspan="1">142,807</td><td colspan="1" rowspan="1">7.9</td><td colspan="1" rowspan="1">More than <a href="https://www.britannica.com/event/Tokyo-Yokohama-earthquake-of-1923">half of brick buildings, and 10% of reinforced structures</a> collapsed. Caused a tsunami with height up to 12m. Large fires broke out; combined with a large tornado, these spread quickly. </td></tr></tbody></table></div> ## Volcanoes ### Number of significant volcanic eruptions There are a large number of volcanoes across the world which are volcanically active, but display little or only very low-level activity. In the map we see the number of _significant_ volcanic eruptions which occur in each country in a given year. A significant eruption is classified as one that meets at least one of the following criteria: caused fatalities, caused moderate damage (approximately $1 million or more), with a [Volcanic Explosivity Index](https://ourworldindata.org/natural-disasters#volcanic-explosivity-index-vei) of 6 or larger, caused a tsunami, or was associated with a major earthquake.{ref}This data is sourced from the The [Significant Volcanic Eruption Database](https://www.ngdc.noaa.gov/nndc/servlet/ShowDatasets?dataset=102557&search_look=50&display_look=50) is a global listing of over 500 significant eruptions.{/ref} Estimates of volcanic eruptions are available dating back as early as 1750 BCE, however, the data completeness for long historic events will be much lower than in the recent past. <Chart url="https://ourworldindata.org/grapher/significant-volcanic-eruptions"/> ### Deaths from volcanic eruptions In the visualization we see the number of deaths from significant volcanic eruptions across the world. Using the timeline on the map we can see the frequency of volcanic activity deaths over time. If we look at deaths over the past century we see several high-impact events: the [Nevado del Ruiz eruption](https://en.wikipedia.org/wiki/Armero_tragedy) in Colombia in 1985; the Mount Pelée eruption in Martinique in 1902; and [1883 eruption of Krakatoa](https://en.wikipedia.org/wiki/1883_eruption_of_Krakatoa) in Indonesia. <Chart url="https://ourworldindata.org/grapher/deaths-from-volcanic-eruptions"/> ## Landslides This visualization – sourced from the NASA Socioeconomic Data And Applications Center (SEDAC) – shows the distribution of mortality risk from landslides across the world. As we would expect, the risks of landslides are much greater close to highly mountainous regions with dense neighbouring populations. This makes the mortality risk highest across the Andes region in South America, and the Himalayas across Asia. <Image filename="ourworldindata_global-landslide-mortality-risk-distribution-–-sedac-nasa0.png" alt="Global Landslide Mortality Risk Distribution – SEDAC (NASA)0"/> ## Famines & Droughts We cover the history of Famines in detail in our dedicated entry [**here**](https://ourworldindata.org/famines). For this research we assembled a new global dataset on famines from the 1860s until 2016. In the visualization shown here we see trends in drought severity in the United States. Given is the annual data of drought severity, plus the 9-year average. This is measured by the The Palmer Drought Severity Index: the average moisture conditions observed between 1931 and 1990 at a given location is given an index value of zero. A positive value means conditions are wetter than average, while a negative value is drier than average. A value between -2 and -3 indicates moderate drought, -3 to -4 is severe drought, and -4 or below indicates extreme drought. <Chart url="https://ourworldindata.org/grapher/drought-severity-index-us"/> ## Hurricanes, Tornados, and Cyclones ### Long-term trends in deaths from US weather events Trends in the US provide some of the most complete data on impacts and deaths from weather events over time. This chart shows death rates from lightning and other weather events in the United States over time. Death rates are given as the number of deaths per million individuals. Over this period, we see that on average each has seen a significant decline in death rates. This is primarily the result of improved infrastructure, predicted and response systems to disaster events. <Chart url="https://ourworldindata.org/grapher/fatality-rates-in-the-us-due-to-weather-events"/> ### Intensity of North Atlantic Hurricanes A key metric for assessing hurricane severity is their intensity, and the power they carry. The visualizations here use two metrics to define this: the accumulated cyclone energy (ACE), an index that measures the activity of a cyclone season; and the power dissipation index of cyclones. <Chart url="https://ourworldindata.org/grapher/ace-north-atlantic-hurricanes"/> <Chart url="https://ourworldindata.org/grapher/cyclone-power-dissipation-index"/> ## Extreme precipitation and flooding ### Precipitation anomalies In the visualization shown we see the global precipitation anomaly each year; trends in the US-specific anomaly can be found [here](https://ourworldindata.org/grapher/precipitation-anomaly). This precipitation anomaly is measured relative to the century average from 1901 to 2000. Positive values indicate a wetter year than normal; negative values indicate a drier year. Also shown is US-specific data on the share of land area which experiences unusually high precipitation in any given year. <Chart url="https://ourworldindata.org/grapher/global-precipitation-anomaly"/> <Chart url="https://ourworldindata.org/grapher/unusually-high-precipitation-usa"/> ### Precipitation extremes We can look at precipitation anomalies over the course of year, however, flooding events are often caused by intense rainfall over much shorter periods. Flooding events tend to occur when there is extremely high rainfall over the course of hours or days. The visualization here shows the extent of extreme one-day precipitation in the US. What we see is a general upwards trend in the extent of extreme rainfall in recent decades. <Chart url="https://ourworldindata.org/grapher/extreme-one-day-precipitation-usa"/> ## Extreme Temperature (Heat & Cold) Extreme temperature risks to human health and mortality can result from both exposure to extreme heat and cold. ### Heatwaves and high temperatures In the visualizations shown here we see long-term data on heatwaves and unusually high temperatures in the United States. Overall we see there is significant year-to-year variability in the extent of heatwave events. What stands out over the past century of data was the [1936 North American heatwave](https://en.wikipedia.org/wiki/1936_North_American_heat_wave) – one of the most extreme heat wave events in modern history, which coincided with the Great Depression and Dust Bowl of the 1930s. When we look at the trajectory of unusually high summer temperatures over time (defined as 'unusually high' in the context of historical records) we see an upward trend in recent decades. <Chart url="https://ourworldindata.org/grapher/heat-wave-index-usa"/> <Chart url="https://ourworldindata.org/grapher/high-summer-temp-usa"/> ### Cold temperatures Whilst we often focus on heatwave and warm temperatures in relation to weather extremes, extremely low temperatures can often have a high toll on human health and mortality. In the visualization here we show trends in the share of US land area experiencing unusually low winter temperatures. In recent years there appears to have been a declining trend in the extent of the US experiencing particularly cold winters. <Chart url="https://ourworldindata.org/grapher/low-winter-temps-usa"/> ## Wildfires ### US Wildfires How are the frequency and extent of wildfires in the United States changing over time? In the charts below we provide three overviews: the number of wildfires, the total acres burned, and the average acres burned per wildfire. This data is shown from 1983 onwards, when comparable data recording began. Over the past 30-35 years we notice three general trends in the charts below (although there is significant year-to-year variability): * on average, the annual number of wildfires has not changed much; * on average, the total acres burned has increased from the 1980s and 1990s into the 21st century; * the combination of these two factors suggest that the average acres burned _per wildfire_ has increased. There has been significant media coverage of the long-run statistics of US wildfires reported by the National Interagency Fire Center (NIFC). The original statistics are available back to the year 1926. When we look at this long-term series it suggests there has been a significant decline in acres burned over the past century. However, the NIFC explicitly state: -- undefined Representatives from the NIFC have again confirmed (see the Carbon Brief's coverage **[here](https://www.carbonbrief.org/factcheck-how-global-warming-has-increased-us-wildfires)**) that these historic statistics are not comparable to those since 1983. The lack of reliable methods of measurement and reporting mean some historic statistics may in fact be double or triple-counted in national statistics. This means we cannot compare the recent data below with old, historic records. But it also doesn't confirm that acres burned today are higher than the first half of the 20th century. Historically, fires were an [often-used method](https://www.fs.fed.us/research/sustain/docs/national-reports/2003/data/documents/Indicator%2015/Indicator%2015.pdf) of clearing land for agriculture, for example. It's not implausible to expect that wildfires of the past may have been larger than today but the available data is not reliable enough to confirm this. <Chart url="https://ourworldindata.org/grapher/wildfire-numbers-usa"/> <Chart url="https://ourworldindata.org/grapher/acres-burned-usa"/> <Chart url="https://ourworldindata.org/grapher/acres-burned-per-wildfire-usa"/> ## Lightning ### Long-term trends in US lightning strikes This chart shows the declining death rate due to lightning strikes in the US. In the first decade of the 20th century the average annual rate of deaths was 4.5 per million people in the US. In the first 15 years of the 21st century the death rate had declined to an average of 0.12 deaths per million. This is a 37-fold reduction in the likelihood of being killed by lightning in the US. <Chart url="https://ourworldindata.org/grapher/fatality-rates-due-to-lightning-in-the-us"/> ### Lightning strikes across the world The map here shows the distribution of lightning strikes across the world. This is given as the lightning strike density – the average strikes per square kilometer each year. In particular we see the high frequency of strikes across the Equatorial regions, especially across central Africa. <Image filename="ourworldindata_world-map-of-frequency-of-lightning-strikes-–-wikipedia-nasa-data0.png" alt="World Map of Frequency of lightning strikes – Wikipedia [NASA data]0"/> --- # Economic costs --- ## Global disaster costs Natural disasters not only have devastating impacts in terms of the loss of human life, but can also cause severe destruction with economic costs. When we look at global economic costs over time in [absolute terms](https://ourworldindata.org/grapher/damage-costs-from-natural-disasters) we tend to see rising costs. But, importantly, the world – and most countries – have also [gotten richer](https://ourworldindata.org/economic-growth). Global gross domestic product has increased [more than four-fold](https://ourworldindata.org/grapher/world-gdp-over-the-last-two-millennia?time=1900..2015) since 1970. We might therefore expect that for any given disaster, the absolute economic costs could be higher than in the past. A more appropriate metric to compare economic costs over time is to look at them in relation to GDP. This is the [indicator adopted](https://sdg-tracker.org/cities#11.5.2) by all countries as part of the UN Sustainable Development Goals to monitor progress on resilience to disaster costs. In the chart, we see global direct disaster losses given as a share of GDP. <Chart url="https://ourworldindata.org/explorers/natural-disasters?facet=none&country=~OWID_WRL&Disaster+Type=All+disasters&Impact=Economic+damages+%28%25+GDP%29&Timespan=Annual&Per+capita=false&hideControls=true"/> ## Disaster costs by country Since economic losses from disasters in relation to GDP is the [indicator adopted](https://sdg-tracker.org/cities#11.5.2) by all countries within the UN Sustainable Development Goals, this data is also now reported for each country. The map shows direct disaster costs for each country as a share of its GDP. Here we see large variations by country – a 100-fold difference ranging from less than 0.05% to 5%. This data can be found in absolute terms [**here**](https://ourworldindata.org/grapher/direct-disaster-economic-loss?tab=chart). <Chart url="https://ourworldindata.org/grapher/direct-disaster-loss-as-a-share-of-gdp"/> --- # Not all deaths are equal: How many deaths make a natural disaster newsworthy? --- How many deaths does it take for a natural disaster to be newsworthy? This is a question researchers Thomas Eisensee and David Strömberg asked in a 2007 study.{ref}Eisensee, T., & Strömberg, D. (2007). News droughts, news floods, and US disaster relief. The Quarterly Journal of Economics, 122(2), 693-728. Online here: [http://perseus.iies.su.se/~dstro/wpdisasters.pdf](http://perseus.iies.su.se/~dstro/wpdisasters.pdf){/ref} The two authors found that for every person killed by a volcano, nearly 40,000 people have to die of a food shortage to get the same probability of coverage in US televised news.{ref}As is mentioned below in more detail, this figure is controlled for other factors (i.e. country, year, month, and number of people affected).{/ref} ### The type of disaster matters In other words, the _type_ of disaster matters to how newsworthy networks find it to be. The visualizations show the extent of this observed "news effect". The chart shows the proportion of each type of disaster that receives news coverage, and the second shows the "casualties ratio", which tells us—all else equal—how many casualties would make media coverage equally likely for each type of disaster. <Chart url="https://ourworldindata.org/grapher/news-coverage-of-disasters"/> <Chart url="https://ourworldindata.org/grapher/how-many-deaths-does-it-take-for-a-disaster-to-receive-news-coverage"/> The study, which primarily set out to examine mass media’s influence on US natural disaster response, considered over 5,000 natural disasters{ref}The study used a database compiled by the Centre for Research on the Epidemiology of Disasters, where an event qualifies as a disaster if at least one of the following criteria are fulfilled: ten or more people are reported, killed; 100 or more people are reported affected, injured, and/or homeless; there has been a declaration of a state of emergency; or there has been a call for international assistance.{/ref} and 700,000 news stories from the major US national broadcast networks (ABC, CBS, NBC, and CNN) between 1968 and 2002. The findings tells us, among other important things, that networks tend to be selective in their coverage and attention is not reflecting the severity and number of people killed or affected by a natural disaster. Instead of considering the objective damage caused by natural disasters, networks tend to look for disasters that are “rife with drama”, as one New York Times article put it{ref}Eisensee, T., & Strömberg, D. (2007). News droughts, news floods, and US disaster relief. The Quarterly Journal of Economics, 122(2), 693-728. Online here: [http://perseus.iies.su.se/~dstro/wpdisasters.pdf](http://perseus.iies.su.se/~dstro/wpdisasters.pdf){/ref}—hurricanes, tornadoes, forest fires, earthquakes all make for splashy headlines and captivating visuals. Thanks to this selectivity, less "spectacular" but often times more deadly natural disasters tend to get passed over. [Food shortages](https://ourworldindata.org/famines/), for example, result in the most casualties and affect the most people per incident{ref}Based on the study’s analysis of data compiled by the Centre for Research on the Epidemiology of Disasters.{/ref} but their onset is more gradual than that of a volcanic explosion or sudden earthquake. As a result, food shortages are covered only 3% of the time while a comparatively indulgent 30% of earthquakes and volcanic events get their time in the spotlight. Additionally, when the researchers “hold all else equal” by controlling for factors such as yearly trends in news intensity and the number of people killed and affected, the difference in coverage is even more pronounced. This bias for the spectacular is not only unfair and misleading, but also has the potential to misallocate attention and aid. Disasters that happen in an instant leave little time for preventative intervention. On the other hand, the gradual disasters that tend to affect more lives build up slowly, allowing more time for preventative measures to be taken. However, in a Catch-22 situation, the gradual nature of these calamities is also what prevents them from garnering the media attention they deserve. ### And the location of the disaster matters too There are other biases, too. Eisensee and Strömberg found that while television networks cover more than 15% of the disasters in Europe and South Central America, they show less than 5% of the disasters in Africa and the Pacific. Disasters in Africa tend to get less coverage than ones in Asia because they are less "spectacular", with more droughts and food shortages occurring there relative to Asia. However, after controlling for disaster type, along with other factors such as the number killed and the timing of the news, there is no significant difference between coverage of African and Asian disasters. Instead, a huge difference emerges between coverage of Africa, Asia, and the Pacific on the one hand, and Europe and South and Central America, on the other. According to the researchers’ estimates, 45 times as many people would have to die in an African disaster for it to garner the same media attention as a European one. The two visualizations show the extent of this bias. ABC News’s slogan is “See the whole picture” and CNN’s is “Go there”, but good follow-up questions might be: what exactly, and where? <Chart url="https://ourworldindata.org/grapher/news-coverage-of-disasters-by-continent"/> <Chart url="https://ourworldindata.org/grapher/how-many-deaths-does-it-take-for-a-disaster-in-different-continents-to-receive-news-coverage"/> --- # Link between poverty and deaths from natural disasters --- One of the major successes over the past century has been the dramatic [decline in global deaths](https://ourworldindata.org/natural-disasters#number-of-deaths-from-natural-disasters) from natural disasters – this is despite the fact that the [human population](https://owid.cloud/world-population-growth) has increased rapidly over this period. Behind this improvement has been the improvement in living standards; access to and development of resilient infrastructure; and effective response systems. These factors have been driven by an [increase in incomes](https://owid.cloud/economic-growth) across the world. What remains true today is that populations in low-income countries – those where a large percentage of the population still live in [extreme poverty](https://owid.cloud/extreme-poverty), or score low on the [Human Development Index](https://ourworldindata.org/human-development-index/) – are more vulnerable to the effects of natural disasters. We see this effect in the visualization shown. This chart shows the death rates from natural disasters – the number of deaths per 100,000 population – of countries grouped by their [socio-demographic index](http://www.healthdata.org/taxonomy/glossary/socio-demographic-index-sdi) (SDI). SDI is a metric of development, where low-SDI denotes countries with low standards of living. What we see is that the large spikes in death rates occur almost exclusively for countries with a low or low-middle SDI. Highly developed countries are much more resilient to disaster events and therefore have a consistently low death rate from natural disasters. Note that this does not mean low-income countries have high death tolls from disasters year-to-year: the data here shows that in most years they also have very low death rates. But when low-frequency, high-impact events do occur they are particularly vulnerable to its effects. Overall development, poverty alleviation, and knowledge-sharing of how to increase resilience to natural disasters will therefore be key to reducing the toll of disasters in the decades to come. <Chart url="https://ourworldindata.org/grapher/death-rates-natural-disasters"/> --- # Definitions & Metrics --- ### Hurricanes, cyclones & typhoons There are multiple terms used to describe extreme weather events: hurricanes, typhoons, cyclones and tornadoes. What is the difference between these terms, and how are they defined? The terms **hurricane**, **cyclone** and **typhoon** all refer to the same thing; they can be used interchangeably. Hurricanes and typhoons are both described as the weather phenomenon 'tropical cyclone'. A tropical cyclone is a weather event which originates over tropical or subtropical waters and results in a rotating, organized system of clouds and thunderstorms. Its circulation patterns should be closed and low-level. The choice of terminology is location-specific and depends on where the storm originates. The term _hurricane_ is used to describe a tropical cyclone which originates in the North Atlantic, central North Pacific, and eastern North Pacific. When it originates in the Northwest Pacific, we call it _typhoon_. In the South Pacific and Indian Ocean the general term _tropical cyclone_ is used. In other words, [the only difference](https://oceanservice.noaa.gov/facts/cyclone.html) between a hurricane and typhoon is where it occurs. ### When does a storm become a hurricane? The characteristics of a hurricane are described in detail at the [NASA website](https://www.nasa.gov/audience/forstudents/k-4/stories/nasa-knows/what-are-hurricanes-k4.html). A hurricane evolves from a tropical disturbance or storm based on a threshold of wind speed. A tropical disturbance arises over warm ocean waters. It can grow into a tropical depression which is an area of rotating thunderstorms with winds up to 62 kilometres (38 miles) per hour. From there, a depression evolves into a tropical storm if its wind speed reaches 63 km/hr (39 mph). Finally a hurricane is formed when a tropical storm reaches a wind speed of 119 km/hr (74 mph). ### Difference between hurricanes and tornadoes But, hurricanes/typhoons/cyclones _are_ distinctly different from tornadoes. Whilst hurricanes and tornadoes have a characteristic circulatory wind patterns, they are very different weather systems. The main [difference between the systems](https://pmm.nasa.gov/resources/faq/what-difference-between-tornado-and-hurricane) is scale (tornadoes are small-scale circulatory systems; hurricanes are large-scale). These differences are highlighted in the table below: <div class="raw-html-table__container"><table><thead><tr><th scope="col" colspan="1"></th><th scope="col" colspan="1">Hurricanes/typhoons</th><th scope="col" colspan="1">Tornadoes</th></tr></thead><tbody><tr><td colspan="1" rowspan="1"><strong>Diameter</strong></td><td colspan="1" rowspan="1">60 to 1000s miles</td><td colspan="1" rowspan="1">Up to 1 - 1.5 miles (usually less)</td></tr><tr><td colspan="1" rowspan="1"><strong>Wind speed</strong></td><td colspan="1" rowspan="1">74 to 200 mph</td><td colspan="1" rowspan="1">40 to 300 mph</td></tr><tr><td colspan="1" rowspan="1"><strong>Lifetime</strong></td><td colspan="1" rowspan="1">Long (usually days)</td><td colspan="1" rowspan="1">Very short (usually minutes)</td></tr><tr><td colspan="1" rowspan="1"><strong>Travel distance</strong></td><td colspan="1" rowspan="1">Long (100 metres to 100 miles)</td><td colspan="1" rowspan="1">Short distances</td></tr><tr><td colspan="1" rowspan="1"><strong>Environmental impact</strong></td><td colspan="1" rowspan="1">Can have impact on wider environment and atmospheric patterns.</td><td colspan="1" rowspan="1">Local (although can be very high impact). Little wider impact on atmospheric systems or environment.</td></tr></tbody></table></div> ### Volcanic Explosivity Index (VEI) The intensity or size of volcanic eruptions are most commonly defined by a metric termed the 'volcanic explosivity index (VEI)'. The VEI is derived based on the erupted mass or deposit of an eruption. The scale for VEI was outlined by Newhall & Self (1982), but is now commonly adopted in geophysical reporting.{ref}Newhall, C.G. and Self, S (1982). The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism._Jour Geophys Res (Oceans & Atmospheres)_, 87:1231-1238. Available at: [https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC087iC02p01231](https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC087iC02p01231).{/ref} The table below provides a summary (from the [NOAA's National Geophysical Data Center](https://www.ngdc.noaa.gov/nndc/DescribeField.jsp?dataset=102557&s=77&field_name=HAZ.VOLCANO_EVENT.VEI)) of the characteristics of eruptions of different VEI values. A 'Significant Volcanic Eruption' is often defined as an eruption with a VEI value of 6 or greater. Historic eruptions that were definitely explosive, but carry no other descriptive information are assigned a default VEI of 2. <div class="raw-html-table__container"><table><thead><tr><th scope="col" colspan="1">Volcanic Explosivity Index (VEI)</th><th scope="col" colspan="1">General description</th><th scope="col" colspan="1">Cloud Column Height (km)</th><th scope="col" colspan="1">Volume (m³)</th><th scope="col" colspan="1">Qualititative Description</th><th scope="col" colspan="1">Classification</th><th scope="col" colspan="1">How frequent?</th><th scope="col" colspan="1">Example</th></tr></thead><tbody><tr><td colspan="1" rowspan="1">0</td><td colspan="1" rowspan="1">Non-explosive</td><td colspan="1" rowspan="1">< 0.1 km</td><td colspan="1" rowspan="1">1x10⁴</td><td colspan="1" rowspan="1">Gentle</td><td colspan="1" rowspan="1">Hawaiian</td><td colspan="1" rowspan="1">daily</td><td colspan="1" rowspan="1">Kilauea</td></tr><tr><td colspan="1" rowspan="1">1</td><td colspan="1" rowspan="1">Small</td><td colspan="1" rowspan="1">0.1 - 1 km</td><td colspan="1" rowspan="1">1x10⁶</td><td colspan="1" rowspan="1">Effusive</td><td colspan="1" rowspan="1">Haw/Strombolian</td><td colspan="1" rowspan="1">daily</td><td colspan="1" rowspan="1">Stromboli</td></tr><tr><td colspan="1" rowspan="1">2</td><td colspan="1" rowspan="1">Moderate</td><td colspan="1" rowspan="1">1 - 5 km</td><td colspan="1" rowspan="1">1x10⁷</td><td colspan="1" rowspan="1">Explosive</td><td colspan="1" rowspan="1">Strom/Vulcanian</td><td colspan="1" rowspan="1">weekly</td><td colspan="1" rowspan="1">Galeras, 1992</td></tr><tr><td colspan="1" rowspan="1">3</td><td colspan="1" rowspan="1">Moderate-Large</td><td colspan="1" rowspan="1">3 - 15 km</td><td colspan="1" rowspan="1">1x10⁸</td><td colspan="1" rowspan="1">Explosive</td><td colspan="1" rowspan="1">Vulcanian</td><td colspan="1" rowspan="1">annually</td><td colspan="1" rowspan="1">Ruiz, 1985</td></tr><tr><td colspan="1" rowspan="1">4</td><td colspan="1" rowspan="1">Large</td><td colspan="1" rowspan="1">10 - 25 km</td><td colspan="1" rowspan="1">1x10⁹</td><td colspan="1" rowspan="1">Explosive</td><td colspan="1" rowspan="1">Vulc/Plinian</td><td colspan="1" rowspan="1">10's of years</td><td colspan="1" rowspan="1">Galunggung, 1982</td></tr><tr><td colspan="1" rowspan="1">5</td><td colspan="1" rowspan="1">Very Large</td><td colspan="1" rowspan="1">> 25 km</td><td colspan="1" rowspan="1">1x10¹⁰</td><td colspan="1" rowspan="1">Cataclysmic</td><td colspan="1" rowspan="1">Plinian</td><td colspan="1" rowspan="1">100's of years</td><td colspan="1" rowspan="1">St. Helens, 1981</td></tr><tr><td colspan="1" rowspan="1">6</td><td colspan="1" rowspan="1"></td><td colspan="1" rowspan="1">> 25 km</td><td colspan="1" rowspan="1">1x10¹¹</td><td colspan="1" rowspan="1">Paroxysmal</td><td colspan="1" rowspan="1">Plin/Ultra-Plinian</td><td colspan="1" rowspan="1">100's of years</td><td colspan="1" rowspan="1">Krakatau, 1883</td></tr><tr><td colspan="1" rowspan="1">7</td><td colspan="1" rowspan="1"></td><td colspan="1" rowspan="1">> 25 km</td><td colspan="1" rowspan="1">1x10¹²</td><td colspan="1" rowspan="1">Colossal</td><td colspan="1" rowspan="1">Ultra-Plinian</td><td colspan="1" rowspan="1">1000's of years</td><td colspan="1" rowspan="1">Tambora, 1815</td></tr><tr><td colspan="1" rowspan="1">8</td><td colspan="1" rowspan="1"></td><td colspan="1" rowspan="1">> 25 km</td><td colspan="1" rowspan="1">>1x10¹²</td><td colspan="1" rowspan="1">Colossal</td><td colspan="1" rowspan="1">Ultra-Plinian</td><td colspan="1" rowspan="1">10,000's of years</td><td colspan="1" rowspan="1">Yellowstone, 2 Ma</td></tr></tbody></table></div> --- # Data Quality --- ### Number of reported disaster events A key issue of data quality is the consistency of even reporting over time. For long-term trends in natural disaster events we know that reporting and recording of events today is much more advanced and complete than in the past. This can lead to significant underreporting or uncertainty of events in the distant past. In the chart here we show data on the number of _reported_ natural disasters over time. This change over time can be influenced by a number of factors, namely the increased coverage of reporting over time. The increase over time is therefore not directly reflective of the _actual_ trend in disaster events. <Chart url="https://ourworldindata.org/grapher/number-of-natural-disaster-events"/> ### Number of reported disasters by type This same data is shown here as the number of _reported_ disaster events by type. Again, the incompleteness of historical data can lead to significant underreporting in the past. The increase over time is therefore not directly reflective of the _actual_ trend in disaster events. <Chart url="https://ourworldindata.org/grapher/natural-disasters-by-type"/> --- # Data Sources --- Wikipedia has several lists of disasters, and an overview of these lists can be found at [List of Disasters](http://en.wikipedia.org/wiki/Lists_of_disasters). ### Deaths from natural disasters #### Institute for Health Metrics and Evaluation (IHME), Global Burden of Disease * **Data:** IHME provides data on deaths and death rates from natural disasters * **Geographical coverage:** Global – country and regional level * **Time span:** 1990 onwards * **Available at:**[IHME, GBD](http://www.emdat.be/) ### Multiple Types of Disasters #### EM-DAT – The International Disaster Database * **Data:** EM-DAT is a catalogue of disasters listing detailed information on natural disasters: droughts (famines), earthquakes, epidemics, extreme temperatures, floods, insect infestations, mass movement (dry & wet), storms, volcanos, and wildfires. There is also a data section on technological disasters. * **Geographical coverage:** Global – country and regional level (primarily cross-country data set, but also contains the name of the sub-national regions affected by disasters) * **Time span:** 1900 onwards * **Available at:**[EM-DAT](http://www.emdat.be) * _Raw data has to be requested but the [section on disaster trends](http://web.archive.org/web/20150829055006/http://www.emdat.be:80/disaster-trends) encompasses a number of visualizations (time series and maps). _ * _EM-DAT is maintained by the [Center for Research on the Epidemiology of Disasters (CRED)](https://web.archive.org/web/20190922043847/https://www.cred.be/) _ * _EM-DAT data on the annual number of deaths and number of affected by drought, epidemics, earthquakes, extreme temperature, flood, storm, tsunami, plane crash by country is available at **Gapminder**._ #### Earth Observatory by NASA – Natural Hazards * **Data:** Up to date information and satellite images on fires, storms, floods, volcanoes, earthquakes, and droughts * **Geographical coverage:** Global * **Time span:** Recent years – very up to date * **Available at:**[earthobservatory.nasa.gov/NaturalHazards](http://earthobservatory.nasa.gov/NaturalHazards/) #### Natural Hazards Data – U.S. National Oceanic and Atmospheric Administration's National Geophysical Data Center (NGDC) * **Data:** Data and maps on many natural hazards including cyclones, tsunamis, earthquakes, volcanoes, and wildfires. It includes the 'Global Significant Earthquake Database, 2150 B.C. to present' (5500 events) and 'The Significant Volcanic Eruption Database' and ‘Global Historical Tsunami Events and Runups’ among many other datasets. * **Geographical coverage:** Global – exact location * **Time span:** Millennia * **Available at:** Online [here](http://www.ngdc.noaa.gov/hazard/hazards.shtml) * _Download maps as pdf or ArcIMS interactive maps, and data in tab-delimited data files or html._ #### Global Risk Data Platform * **Data:** Spatial data on tropical cyclones and related storm surges, drought, earthquakes, biomass fires, floods, landslides, tsunamis and volcanic eruptions. * **Geographical coverage:** Global * **Time span:** Recent past * **Available at:** The website can be found [here](http://preview.grid.unep.ch). * _Users can visualize, download or extract data on past hazardous events, human & economical hazard exposure and risk from natural hazards._ #### Socioeconomic Data and Applications Center (SEDAC) – by NASA * **Data: **Maps of natural hazards * **Geographical coverage: **Global * **Time span: **Recent years * **Available at: **Online [here at the SEDAC website at Colombia University](http://sedac.ciesin.columbia.edu/data/sets/browse?facets=theme:hazards)** ** #### Center for Hazards & Risk Research at Columbia University * **Hotspots:** Risk levels calculated by combining hazard exposure with historical vulnerability for two indicators of elements at risk—gridded population and Gross Domestic Product (GDP) per unit area—for six major natural hazards: earthquakes, volcanoes, landslides, floods, drought, and cyclones * **Natural disaster profiles:** Profiles for 13 countries provide information on sub-national areas at risk from natural hazards including cyclones, droughts, earthquakes, volcanoes, floods, and landslides. * **Geographical coverage: **Global for hotspots data * **Time span: **Recent past * **Available at: **Online [here](http://www.ldeo.columbia.edu/chrr/research/profiles/)** ** ### Earthquakes #### Global Earthquake Model (GEM) * **Data:** GEM Global Historical Earthquake Catalogue (1000-1900) and the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009) * **Geographical coverage:**Global * **Time span: **1000 onwards * **Available at: **Online [here](http://web.archive.org/web/20130106062157/http://www.globalquakemodel.org:80/risk-global-components/exposure-database)** ** ### Fire #### ATSR World Fire Atlas – by the European Space Agency (ESA) * **Data: **Monthly global fire maps * **Geographical coverage: **Global * **Time span:** 1995 onwards * **Available at: **Online at the website of ESA [here](http://due.esrin.esa.int/page_wfa.php)** ** ### Tsunami The **Center for International Earth Science Information Network** at the Earth Institute at Columbia University publishes data on the [Population Affected by the Indian Ocean Tsunami](http://www.ciesin.columbia.edu/tsunami2004.html)_(December 2004)_. ### Floods **Wikipedia** has a [List of Deadliest Floods](http://en.wikipedia.org/wiki/List_of_deadliest_floods) and a [List of Floods](http://en.wikipedia.org/wiki/List_of_floods). ### Hurricanes #### Unisys Data on Hurricanes * **Data:** Data on the track of the storm plus a text-based table of tracking information. The table includes position in latitude and longitude, maximum sustained winds in knots, and central pressure in millibars. * **Geographical coverage:** Atlantic, East Pacific, West Pacific, South Pacific, South Indian, and North Indian * **Time span:** 1851 until now * **Available at:** Online [here](http://weather.unisys.com/hurricanes) * __ This data set was used by Dean Yang (2008) – Coping with Disaster: The Impact of Hurricanes on International Financial Flows, 1970-2002. The B.E. Journal of Economic Analysis & Policy. Volume 8, Issue 1, ISSN (Online) 1935-1682, DOI: 10.2202/1935-1682.1903, June 2008. Online [here](http://www.degruyter.com/view/j/bejeap.2008.8.1/bejeap.2008.8.1.1903/bejeap.2008.8.1.1903.xml?format=INT).__ #### National Climatic Data Center (NOAA) * **Data:** Data on the track of storms * **Geographical coverage:** Global * **Time span:** 1848 until now * **Available at:** Online at [NOAA here](http://www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data) ### Volcanoes #### National Geophysical Data Center (NGDC) * **Data:** Global listing of over 500 significant eruptions which includes information on the latitude, longitude, elevation, type of volcano, and last known eruption. * **Geographical coverage:** Global * **Time span:** 1750BC onwards * **Available at:** Online at the [Significant Volcanic Eruption Database.](https://www.ngdc.noaa.gov/nndc/servlet/ShowDatasets?dataset=102557&search_look=50&display_look=50) #### Smithsonian Institution's Global Volcanism Program (GVP) * **Data:** Complete list of current and past activity for all volcanoes on the planet active during the last 10,000 years. Data includes eruption type, maximum Volcanic Explosivity Index, start and end dates (when known), and the type of evidence for the eruption. * **Geographical coverage:** Global * **Time span:** Past 10,000 years to present day * **Available at:** Online at [the Volcanoes of the World Database](http://volcano.si.edu/search_eruption.cfm##) * **Full reference:** Global Volcanism Program, 2013. Volcanoes of the World, v. 4.7.3. Venzke, E (ed.). Smithsonian Institution. https://doi.org/10.5479/si.GVP.VOTW4-2013 ### Lightning #### Lightning Maps * **Data:** Real-time tracking of lightning strikes * **Geographical coverage:** Global * **Time span:** Real-time * **Available at:** Online [here](http://www.lightningmaps.org/#m=oss;t=3;s=0;o=0;b=;ts=0;) <AllCharts heading="Interactive charts on natural disasters"/> | { "id": 4315, "date": "2022-12-07T08:30:00", "guid": { "rendered": "http://ourworldindata.org/?page_id=4315" }, "link": "https://owid.cloud/natural-disasters", "meta": { "owid_publication_context_meta_field": [], "owid_key_performance_indicators_meta_field": { "raw": "* Over the last decade the annual number of deaths due to natural disasters was **45,000** globally. ", "rendered": "<ul>\n<li>Over the last decade the annual number of deaths due to natural disasters was <strong>45,000</strong> globally.</li>\n</ul>\n" } }, "slug": "natural-disasters", "tags": [], "type": "page", "title": { "rendered": "Natural Disasters" }, "_links": { "self": [ { "href": "https://owid.cloud/wp-json/wp/v2/pages/4315" } ], "about": [ { "href": "https://owid.cloud/wp-json/wp/v2/types/page" } ], "author": [ { "href": "https://owid.cloud/wp-json/wp/v2/users/17", "embeddable": true } ], "curies": [ { "href": "https://api.w.org/{rel}", "name": "wp", "templated": true } ], "replies": [ { "href": "https://owid.cloud/wp-json/wp/v2/comments?post=4315", "embeddable": true } ], "wp:term": [ { "href": "https://owid.cloud/wp-json/wp/v2/categories?post=4315", "taxonomy": "category", "embeddable": true }, { "href": "https://owid.cloud/wp-json/wp/v2/tags?post=4315", "taxonomy": "post_tag", "embeddable": true } ], "collection": [ { "href": "https://owid.cloud/wp-json/wp/v2/pages" } ], "wp:attachment": [ { "href": "https://owid.cloud/wp-json/wp/v2/media?parent=4315" } ], "version-history": [ { "href": "https://owid.cloud/wp-json/wp/v2/pages/4315/revisions", "count": 30 } ], "wp:featuredmedia": [ { "href": "https://owid.cloud/wp-json/wp/v2/media/27290", "embeddable": true } ], "predecessor-version": [ { "id": 58443, "href": "https://owid.cloud/wp-json/wp/v2/pages/4315/revisions/58443" } ] }, "author": 17, "parent": 0, "status": "publish", "content": { "rendered": "\n<p>Natural disasters \u2013 from earthquakes and floods to storms and droughts \u2013 affect millions of people every year. However, we are not defenseless against them, and the global death toll, especially from droughts and floods, has been reduced.</p>\n\n\n\n<p>While natural disasters account for a small fraction of <a href=\"https://ourworldindata.org/causes-of-death\">all deaths globally</a>, they can have a large impact, especially on vulnerable populations in low-to-middle-income countries with insufficient infrastructure to protect and respond effectively\u200b. Understanding the frequency, intensity, and impact of natural disasters is crucial if we want to be better prepared and protect people\u2019s lives and livelihoods.</p>\n\n\n\n<p>On this page, you will find our complete collection of data, charts, and research on natural disasters and their human and economic costs.</p>\n\n\n\n<iframe class=\"wp-block-full-content-width\" src=\"https://ourworldindata.org/explorers/natural-disasters?facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL\" style=\"width: 100%; min-height: 740px; max-height: 950px; height: 100vh; border: 0px none !important;\"></iframe>\n\n\n\n<p>\u2192 <a href=\"https://ourworldindata.org/explorers/natural-disasters\">Open the Data Explorer</a> in a new tab.</p>\n\n\n\n<hr class=\"wp-block-separator\"/>\n\n\n\t<div class=\"wp-block-owid-summary\">\n\t\t<h2>Summary</h2>\n\t\t\n\n<ul><li><a href=\"https://ourworldindata.org/natural-disasters#natural-disasters-kill-tens-of-thousands-each-year\">Natural disasters kill on average 45,000 people per year, globally.</a></li><li><a href=\"https://ourworldindata.org/natural-disasters#what-share-of-deaths-are-from-natural-disasters\">Globally, disasters were responsible for 0.1% of deaths over the past decade. This was highly variable, ranging from 0.01% to 0.4%.</a></li><li><a href=\"https://ourworldindata.org/natural-disasters#natural-disasters-kill-tens-of-thousands-each-year\">Deaths from natural disasters have seen a large decline over the past century \u2013 from, in some years, millions of deaths per year to an average of 60,000 over the past decade.</a></li><li><a href=\"https://ourworldindata.org/natural-disasters#number-of-deaths-by-type-of-natural-disaster\">Historically, droughts and floods were the most fatal disaster events. Deaths from these events are now very low \u2013 the most deadly events today tend to be earthquakes.</a></li><li><a href=\"https://ourworldindata.org/natural-disasters#link-between-poverty-and-deaths-from-natural-disasters\">Disasters affect those in poverty most heavily: high death tolls tend to be centered in low-to-middle income countries without the infrastructure to protect and respond to events.</a></li></ul>\n\n\n\t</div>\n\n\n<h2>Natural disasters kill tens of thousands each year</h2>\n\n\n\n<p>The number of deaths from natural disasters can be highly variable from year-to-year; some years pass with very few deaths before a large disaster event claims many lives.<br><br>If we look at the average over the past decade, approximately 45,000 people globally died from natural disasters each year. This represents around 0.1% of global deaths.</p>\n\n\n\n<p>In the visualizations shown here we see the annual variability in the number and share of deaths from natural disasters in recent decades.</p>\n\n\n\n<p>What we see is that in many years, the number of deaths can be very low \u2013 often less than 10,000, and accounting for as low as 0.01% of total deaths. But we also see the devastating impact of shock events: the 1983-85 <a href=\"https://owid.cloud/famines\">famine</a> and drought in Ethiopia; the <a href=\"https://en.wikipedia.org/wiki/2004_Indian_Ocean_earthquake_and_tsunami\">2004 Indian Ocean earthquake and tsunami</a>; <a href=\"https://en.wikipedia.org/wiki/Cyclone_Nargis\">Cyclone Nargis</a> which struck Myanmar in 2008; and the <a href=\"https://en.wikipedia.org/wiki/2010_Haiti_earthquake\">2010 Port-au-Prince earthquake</a> in Haiti. All of these events pushed global disasters deaths over 200,000 \u2013 more than 0.4% of deaths in these years.</p>\n\n\n\n<p>Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. We know from historical data that the world has seen a significant reduction in disaster deaths through earlier prediction, more resilient infrastructure, emergency preparedness, and response systems.<br><br>Those at low incomes are often the most vulnerable to disaster events: improving living standards, infrastructure and response systems in these regions will be key to preventing deaths from natural disasters in the coming decades.</p>\n\n\n\n<iframe src=\"https://ourworldindata.org/explorers/natural-disasters?time=1978..latest&facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=false&country=~OWID_WRL&hideControls=true\" loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\"></iframe>\n\n\n\n<iframe src=\"https://ourworldindata.org/grapher/share-deaths-from-natural-disasters?tab=chart\" style=\"width: 100%; height: 600px; border: 0px none;\"></iframe>\n\n\n\n<h2>What share of deaths are from natural disasters?</h2>\n\n\n\n<p>Globally, over the past decade, natural disasters accounted for an average of 0.1% of total deaths. This was, however, highly variable to high-impact events and ranged from 0.01% to 0.4% of total deaths.</p>\n\n\n\n<p>In the map shown here you can explore these trends by country over the past few decades. Using the timeline on the chart you can observe changes across the world over time, or by clicking on a country you can see its individual trend.</p>\n\n\n\n<p>What we observe is that for most countries the share of deaths from natural disasters are very low in most years. Often it can be zero \u2013 with no loss of life to disasters \u2013 or well below 0.01%. But we also see clearly the effects of low-frequency but high-impact events: in 2010, more than 70% of deaths in Haiti were the result of the <a href=\"https://en.wikipedia.org/wiki/2010_Haiti_earthquake\">Port-au-Prince earthquake</a>. </p>\n\n\n\n<figure><iframe src=\"https://ourworldindata.org/grapher/share-deaths-from-natural-disasters\"></iframe></figure>\n\n\n\n<h2>Number of deaths from natural disasters</h2>\n\n\n\n<h3>Annual deaths from natural disasters</h3>\n\n\n\n<p>In the visualization shown here we see the long-term global trend in natural disaster deaths. This shows the estimated annual number of deaths from disasters from 1900 onwards from the <a href=\"https://www.emdat.be/\">EMDAT International Disaster Database</a>.{ref}EMDAT (2019): OFDA/CRED International Disaster Database, Universit\u00e9 catholique de Louvain \u2013 Brussels \u2013 Belgium{/ref}</p>\n\n\n\n<p>What we see is that in the early-to-mid 20th century, the annual death toll from disasters was high, often reaching over one million per year. In recent decades we have seen a substantial decline in deaths. In most years fewer than 20,000 die (and in the most recent decade, this has often been less than 10,000). Even in peak years with high-impact events, the death toll has not exceeded 500,000 since the mid-1960s. </p>\n\n\n\n<p>This decline is even more impressive when we consider the rate of <a href=\"https://owid.cloud/world-population-growth\">population growth</a> over this period. When we correct for population \u2013 showing this data in terms of death rates (measured per 100,000 people) \u2013 we see an even greater decline over the past century. This chart can be viewed <strong><a href=\"https://ourworldindata.org/explorers/natural-disasters?facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=true&country=~OWID_WRL\">here</a></strong>.</p>\n\n\n\n<p>The annual number of deaths from natural disasters is also available by country since 1990. This can be explored in the interactive map.</p>\n\n\n\n<iframe src=\"https://ourworldindata.org/explorers/natural-disasters?facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=false&country=~OWID_WRL&hideControls=true\" loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\"></iframe>\n\n\n\n<iframe src=\"https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Deaths&Timespan=Annual&Per+capita=false&country=~OWID_WRL&hideControls=true\" loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\"></iframe>\n\n\n\n<h3>Average number of deaths by decade</h3>\n\n\n\n<p>In the chart we show global deaths from natural disasters since 1900, but rather than reporting annual deaths, we show the annual average by decade.</p>\n\n\n\n<p>As we see, over the course of the 20th century there was a significant decline in global deaths from natural disasters. In the early 1900s, the annual average was often in the range of 400,000 to 500,000 deaths. In the second half of the century and into the early 2000s, we have seen a significant decline to less than 100,000 \u2013 at least five times lower than these peaks. <br><br>This decline is even more impressive when we consider the rate of <a href=\"https://owid.cloud/world-population-growth\">population growth</a> over this period. When we correct for population \u2013 showing this data in terms of death rates (measured per 100,000 people) \u2013 then we see a more than 10-fold decline over the past century. This chart can be viewed <a href=\"https://ourworldindata.org/grapher/decadal-average-death-rates-from-natural-disasters?country=~OWID_WRL\"><strong>here</strong></a>.</p>\n\n\n\n<iframe src=\"https://ourworldindata.org/grapher/decadal-deaths-disasters-type?country=OWID_WRL~\" loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\"></iframe>\n\n\n\n<h3>Number of deaths by type of natural disaster</h3>\n\n\n\n<div class=\"wp-block-columns\">\n<div class=\"wp-block-column\">\n<p>With almost minute-by-minute updates on what\u2019s happening in the world, we are constantly reminded of the latest disaster. These stories are, of course, important but they do not give us a sense of how the toll of disasters has changed over time. </p>\n\n\n\n<p>For most of us, it is hard to know whether any given year was a particularly deadly one in the context of previous years.</p>\n\n\n\n<p>To understand the devastating toll of disasters today, and in the past, we have built a <a href=\"http://ourworldindata.org/explorers/natural-disasters\">Natural Disasters Data Explorer</a> which provides estimates of fatalities, displacement and economic damage for every country since 1900. This is based on data sourced from EM-DAT; a project that undertakes the important work of building these incredibly detailed histories of disasters.{ref}EM-DAT, CRED / UCLouvain, Brussels, Belgium \u2013 <a href=\"http://www.emdat.be\">www.emdat.be</a> (D. Guha-Sapir){/ref} </p>\n\n\n\n<p>In this visualization I give a sense of how the global picture has evolved over the last century. It shows the estimated annual death toll \u2013 from all disasters at the top, followed by a breakdown by type. The size of the bubble represents the total death toll for that year.</p>\n\n\n\n<p>I\u2019ve labeled most of the years with the largest death tolls. This usually provokes the follow-up question: \u201cWhy? What event happened?\u201d. So I\u2019ve also noted large-scale events that contributed to the majority \u2013 <em>but not necessarily all </em>\u2013 of the deaths in that year. </p>\n\n\n\n<p>For example, the estimated global death toll from storms in 2008 was approximately 141,000. 138,366 of these deaths occurred in Cyclone Margis, which struck Myanmar, and is labeled on the chart.</p>\n\n\n\n<p>What we see is that in the 20th century, it was common to have years where the death toll was in the millions. This was usually the result of major droughts or floods. Often these would lead to famines. My colleague Joe Hasell looks at the long history of famines <a href=\"http://ourworldindata.org/famines\"><strong>here</strong></a>.</p>\n\n\n\n<p>Improved food security, resilience to other disasters, and better national and international responses mean that the world has not experienced death tolls of this scale in many decades. Famines today are usually driven by civil war and political unrest.</p>\n\n\n\n<p>In most years, the death toll from disasters is now in the range of 10,000 to 20,000 people. In the most fatal years \u2013 which tend to be those with major earthquakes or cyclones \u2013 this can reach tens to hundreds of thousands.</p>\n\n\n\n<p>This trend does not mean that disasters have become less frequent, or less intense. It means the world today is much better at <em>preventing deaths</em> from disasters than in the past. This will become increasingly important in our response and adaptation to <a href=\"http://ourworldindata.org/climate-change\">climate change</a>.</p>\n</div>\n\n\n\n<div class=\"wp-block-column\">\n<figure class=\"wp-block-image size-full\"><img loading=\"lazy\" width=\"1650\" height=\"1595\" src=\"https://owid.cloud/app/uploads/2022/02/Deaths-from-disasters-bubbles-1.png\" alt=\"\" class=\"wp-image-49109\" srcset=\"https://owid.cloud/app/uploads/2022/02/Deaths-from-disasters-bubbles-1.png 1650w, https://owid.cloud/app/uploads/2022/02/Deaths-from-disasters-bubbles-1-400x387.png 400w, https://owid.cloud/app/uploads/2022/02/Deaths-from-disasters-bubbles-1-569x550.png 569w, https://owid.cloud/app/uploads/2022/02/Deaths-from-disasters-bubbles-1-150x145.png 150w, https://owid.cloud/app/uploads/2022/02/Deaths-from-disasters-bubbles-1-768x742.png 768w, https://owid.cloud/app/uploads/2022/02/Deaths-from-disasters-bubbles-1-1536x1485.png 1536w\" sizes=\"(max-width: 1650px) 100vw, 1650px\" /></figure>\n</div>\n</div>\n\n\n\n<h2>Injuries and displacement from disasters</h2>\n\n\n\n<p>Human impacts from natural disasters are not fully captured in mortality rates. Injury, homelessness, and displacement can all have a significant impact on populations.</p>\n\n\n\n<p>The visualisation below shows the number of people displaced internally (i.e. within a given country) from natural disasters. Note that these figures report on the basis of new cases of displaced persons: if someone is forced to flee their home from natural disasters more than once in any given year, they will be recorded only once within these statistics.</p>\n\n\n\n<p>Interactive charts on the following global impacts are available using the links below:</p>\n\n\n\n<ul><li><strong><a href=\"https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Injuries&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL\" target=\"_blank\" rel=\"noreferrer noopener\">Injuries</a></strong>: number of people injured is defined as “People suffering from physical injuries, trauma or an illness requiring immediate medical assistance as a direct result of a disaster.”</li><li><strong><a href=\"https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Homeless&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL\" target=\"_blank\" rel=\"noreferrer noopener\">Homelessness</a></strong>: number of people homeless is defined as “Number of people whose house is destroyed or heavily damaged and therefore need shelter after an event.”</li><li><a href=\"https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Affected&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL\" target=\"_blank\" rel=\"noreferrer noopener\"><strong>Affected</strong></a>: number of people affected is defined as “People requiring immediate assistance during a period of emergency, i.e. requiring basic survival needs such as food, water, shelter, sanitation and immediate medical assistance.”</li><li><a href=\"https://ourworldindata.org/explorers/natural-disasters?tab=map&facet=none&Disaster+Type=All+disasters&Impact=Total+affected&Timespan=Decadal+average&Per+capita=false&country=~OWID_WRL\" target=\"_blank\" rel=\"noreferrer noopener\"><strong>Total number affected</strong></a>: total number of people affected is defined as “the sum of the injured, affected and left homeless after a disaster.”</li></ul>\n\n\n\n<figure><iframe loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/internally-displaced-persons-from-disasters\" width=\"300\" height=\"150\"></iframe></figure>\n\n\n\n<h2>Natural disasters by type</h2>\n\n\n\n<h3>Earthquakes</h3>\n\n\n\n<h4>Earthquake events</h4>\n\n\n\n<p>Earthquake events occur across the world every day. The US Geological Survey (USGS) tracks and reports global earthquakes, with (close to) real-time updates which you can <strong><a href=\"https://earthquake.usgs.gov/earthquakes/map/\" target=\"_blank\" rel=\"noopener noreferrer\">find here</a></strong>.</p>\n\n\n\n<p>However, the earthquakes which occur most frequently are often too small to cause significant damage (whether to human life, or in economic terms).</p>\n\n\n\n<p>In the chart below we show the long history of known earthquakes classified by the <a href=\"https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1\" target=\"_blank\" rel=\"noopener noreferrer\">National Geophysical Data Center (NGDC) of the NOAA</a> as ‘significant’ earthquakes. Significant earthquakes are those which are large enough to cause notable damage. They must meet at least one of the following criteria: caused deaths, moderate damage ($1 million or more), magnitude 7.5 or greater, Modified Mercalli Intensity (MMI) X or greater, or generated a tsunami.</p>\n\n\n\n<p>Available data \u2014 which you can explore in the chart below \u2014 extends back to 2150 BC. But we should be aware that most recent records will be much more complete than our long-run historic estimates. An increase in the number of recorded earthquakes doesn’t necessarily mean this was the true trend over time. By clicking on a country in the map below, you can view it’s full series of known significant earthquakes.</p>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/significant-earthquakes\"></iframe></figure>\n\n\n\n<h4>Deaths from earthquakes</h4>\n\n\n\n<p>Alongside estimates of the number of earthquake events, the National Geophysical Data Center (NGDC) of the NOAA also publish estimates of the number of deaths over this long-term series. In the chart below we see the estimated mortality numbers from 2000 BC through to 2017.</p>\n\n\n\n<p>These figures can be found for specific countries using the “change country” function in the bottom-left of the chart, or by selecting the “map” on the bottom-right.</p>\n\n\n\n<p>At the global level we see that earthquake deaths have been a persistent human risk through time.</p>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/earthquake-deaths\"></iframe></figure>\n\n\n\n<h4>What were the world’s deadliest earthquakes?</h4>\n\n\n\n<p>The number of people dying in natural disasters is <a href=\"https://ourworldindata.org/natural-disasters#number-of-deaths-from-natural-disasters\">lower today</a> than it was in the past; the world has become more resilient.</p>\n\n\n\n<p>Earthquakes, however, can still claim a large number of lives. Whilst historically, floods, droughts, and epidemics dominated disaster deaths, a high annual death toll in recent years often results from a major earthquake and possibly a tsunami caused by them. Since 2000, the two peak years in annual death tolls (reaching hundreds of thousands) were 2004 and 2010. Earthquake deaths accounted for 93 percent and 69 percent of disaster deaths, respectively. Both events (the Sumatra earthquake and tsunami of 2004 and the Port-au-Prince earthquake in 2010) are in the deadliest earthquake rankings below.</p>\n\n\n\n<p>What have been the most deadly earthquakes in human history? In the visualization, we have mapped the top 10 rankings of known earthquakes, which resulted in the largest number of deaths.{ref}Since two events are ranked equally in 8th place, a total of 11 are included.{/ref} This ranking is based on mortality estimates from the NOAA’s National Geophysical Data Center (NGDC).{ref}National Geophysical Data Center / World Data Service (NGDC/WDS): Significant Earthquake Database. National Geophysical Data Center, NOAA. Available at:\u00a0<a rel=\"noreferrer noopener\" href=\"https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1\" target=\"_blank\">https://www.ngdc.noaa.gov/nndc/struts/form?t=101650&s=1&d=1</a>.{/ref}</p>\n\n\n\n<p>Clicking on the visualization will open it in higher resolution. This ranking is also summarized in table form.</p>\n\n\n\n<p>The most deadly earthquake in history was in Shaanxi, China in 1556. It’s estimated to have killed 830,000 people. This is more than twice that of the second most fatal: the recent Port-au-Prince earthquake in Haiti in 2010. It’s reported that 316,000 people died as a result.{ref}The death toll of the Haitian earthquake is still disputed. Here, we present the adopted figure by the NGDC of the NOAA (for consistency with other earthquakes); this is the figure\u0003 reported by the Haitian government. Some sources suggest a lower figure of 220,000. In the latter case, this event would fall to 7th place in the above rankings.{/ref}</p>\n\n\n\n<p>Two very recent earthquakes \u2014 the Sumatra earthquake and tsunami of 2004 and the 2010 Port-au-Prince earthquake \u2014 feature amongst the most deadly in human history. But equally, some of the most fatal occurred in the very distant past. The third deadliest was the earthquake in Antakya (Turkey) in 115 CE. Both old and very recent earthquakes feature near the top of the list. The deadly nature of earthquakes has been a persistent threat throughout our history.</p>\n\n\n\n<div class=\"wp-block-image\"><figure class=\"aligncenter\"><a href=\"https://owid.cloud/app/uploads/2018/10/Deadliest-earthquakes.png\"><img loading=\"lazy\" width=\"750\" height=\"508\" src=\"https://owid.cloud/app/uploads/2018/10/Deadliest-earthquakes-750x508.png\" alt=\"\" class=\"wp-image-20882\" srcset=\"https://owid.cloud/app/uploads/2018/10/Deadliest-earthquakes-750x508.png 750w, https://owid.cloud/app/uploads/2018/10/Deadliest-earthquakes-150x102.png 150w, https://owid.cloud/app/uploads/2018/10/Deadliest-earthquakes-400x271.png 400w, https://owid.cloud/app/uploads/2018/10/Deadliest-earthquakes-768x520.png 768w\" sizes=\"(max-width: 750px) 100vw, 750px\" /></a></figure></div>\n\n\n\n<table id=\"tablepress-100\" class=\"tablepress tablepress-id-100\">\n<thead>\n<tr class=\"row-1 odd\">\n\t<th class=\"column-1\">Ranking</th><th class=\"column-2\">Location</th><th class=\"column-3\">Year</th><th class=\"column-4\">Estimated death toll</th><th class=\"column-5\">Earthquake magnitude </th><th class=\"column-6\">Additional information</th>\n</tr>\n</thead>\n<tbody class=\"row-hover\">\n<tr class=\"row-2 even\">\n\t<td class=\"column-1\">1</td><td class=\"column-2\">Shaanxi, China</td><td class=\"column-3\">1556</td><td class=\"column-4\">830,000</td><td class=\"column-5\">8</td><td class=\"column-6\">More than <a href=\"https://en.wikipedia.org/wiki/1556_Shaanxi_earthquake\">97 counties in China</a> were affected. A 520-mile wide area destroyed. In some counties it's estimated that up to 60% of the population died. Such catastrophic losses are attributed to loess cave settlements, which collapsed as a result.</td>\n</tr>\n<tr class=\"row-3 odd\">\n\t<td class=\"column-1\">2</td><td class=\"column-2\">Port-au-Prince, Haiti</td><td class=\"column-3\">2010</td><td class=\"column-4\">316,000</td><td class=\"column-5\">7</td><td class=\"column-6\">Death toll is still disputed. Here we present the adopted figure by the NGDC of the NOAA (for consistency with other earthquakes); this is the figure\u0003 reported by the Haitian government. Some sources suggest a lower figure of 220,000. In the latter case, this event would fall to 7th place in the above rankings.</td>\n</tr>\n<tr class=\"row-4 even\">\n\t<td class=\"column-1\">3</td><td class=\"column-2\">Antakya, Turkey</td><td class=\"column-3\">115</td><td class=\"column-4\">260,000</td><td class=\"column-5\">7.5</td><td class=\"column-6\">Antioch (ancient ruins which lie near the modern city Antakya) and surrounding areas suffered severe damage. Apamea was <a href=\"https://www.sciencedirect.com/science/article/pii/S0012821X03001444\">also destroyed and Beirut suffered severe damage</a>. A local <a href=\"https://www.earth-prints.org/bitstream/2122/908/1/01Sbeinati.pdf\">tsunami was triggered</a> causing damage to the coast of Lebanon.</td>\n</tr>\n<tr class=\"row-5 odd\">\n\t<td class=\"column-1\">4</td><td class=\"column-2\">Antakya, Turkey</td><td class=\"column-3\">525</td><td class=\"column-4\">250,000</td><td class=\"column-5\">7</td><td class=\"column-6\">Severe damage to the area of the Byzantine Empire. The earthquake caused severe damage to many buildings. However, severe damage was also <a href=\"https://www.earth-prints.org/bitstream/2122/908/1/01Sbeinati.pdf\">caused by fires in the aftermath</a> combined with strong wind.</td>\n</tr>\n<tr class=\"row-6 even\">\n\t<td class=\"column-1\">5</td><td class=\"column-2\">Tangshan, China</td><td class=\"column-3\">1976</td><td class=\"column-4\">242,769</td><td class=\"column-5\">7.5</td><td class=\"column-6\">Reported that the earthquake risk had been greatly underestimated meaning almost all buildings and structures were designed and built without seismic considerations. Estimated that <a href=\"https://authors.library.caltech.edu/26539/\">up to 85% of buildings collapsed</a>. Tangshan therefore large comprised of <a href=\"https://www.nap.edu/login.php?record_id=19764\">unreinforced brick buildings</a> which resulted in a large death toll.</td>\n</tr>\n<tr class=\"row-7 odd\">\n\t<td class=\"column-1\">6</td><td class=\"column-2\">Gyzndzha, Azerbaijan</td><td class=\"column-3\">1139</td><td class=\"column-4\">230,000</td><td class=\"column-5\">Unknown</td><td class=\"column-6\">Often <a href=\"https://www.seismology.az/en/stations/5#.W7aH-ZM-eL8\">termed the Ganja earthquake</a>. Much less is documented on the specific details of this event.</td>\n</tr>\n<tr class=\"row-8 even\">\n\t<td class=\"column-1\">7</td><td class=\"column-2\">Sumatra, Indonesia</td><td class=\"column-3\">2004</td><td class=\"column-4\">227,899</td><td class=\"column-5\">9.1</td><td class=\"column-6\">Earthquake in Indian Ocean off the coast of Sumatra resulted in a series of large tsunamis (<a href=\"https://soundwaves.usgs.gov/2005/03/\">ranging 15 to 30 metres in height</a>). Victims across 14 countries in the regions with Indonesia being the hardest-hit, followed by Sri Lanka, India and Thailand. There was no tsunami warning system in place.</td>\n</tr>\n<tr class=\"row-9 odd\">\n\t<td class=\"column-1\">8</td><td class=\"column-2\">Damghan, Iran</td><td class=\"column-3\">856</td><td class=\"column-4\">200,000</td><td class=\"column-5\">7.9</td><td class=\"column-6\">Estimated that <a href=\"https://en.wikipedia.org/wiki/856_Damghan_earthquake\">extent of the damage area was 220 miles long</a>. It's also hypothesised that the ancient city of \u0160ahr-e Qumis was so badly damaged that it was abandoned after the earthquake.</td>\n</tr>\n<tr class=\"row-10 even\">\n\t<td class=\"column-1\">8</td><td class=\"column-2\">Gansu, China</td><td class=\"column-3\">1920</td><td class=\"column-4\">200,000</td><td class=\"column-5\">8.3</td><td class=\"column-6\">Damage occurred <a href=\"https://en.wikipedia.org/wiki/1920_Haiyuan_earthquake\">across 7 provinces and regions</a>. In some cities almost all buildings collapsed, or were buried by landslides. It was reported than additional deaths occurred due to cold exposure: fear from aftershocks meant survivors tried to rely only on temporary shelters which were unsuitable for the harsh winter.</td>\n</tr>\n<tr class=\"row-11 odd\">\n\t<td class=\"column-1\">9</td><td class=\"column-2\">Dvin, Armenia</td><td class=\"column-3\">893</td><td class=\"column-4\">150,000</td><td class=\"column-5\">Unknown</td><td class=\"column-6\">City of Dvin was destroyed, with the collapse of most buildings, defensive walls and palaces; <a href=\"https://www.earth-prints.org/bitstream/2122/1795/1/22%20hasrat'yan.pdf\">estimated that only 100 buildings were left standing</a>. With its city defences ruined, Dvin was <a href=\"https://en.wikipedia.org/wiki/893_Dvin_earthquake\">taken over and turned into a military base</a> by Muhammad ibn Abi'l-Saj, the Sajid emir of Adharbayjan.</td>\n</tr>\n<tr class=\"row-12 even\">\n\t<td class=\"column-1\">10</td><td class=\"column-2\">Tokyo, Japan</td><td class=\"column-3\">1923</td><td class=\"column-4\">142,807</td><td class=\"column-5\">7.9</td><td class=\"column-6\">More than <a href=\"https://www.britannica.com/event/Tokyo-Yokohama-earthquake-of-1923\">half of brick buildings, and 10% of reinforced structures</a> collapsed. Caused a tsunami with height up to 12m. Large fires broke out; combined with a large tornado, these spread quickly. </td>\n</tr>\n</tbody>\n</table>\n\n\n\n\n<h3>Volcanoes</h3>\n\n\n\n<h4>Number of significant volcanic eruptions</h4>\n\n\n\n<p>There are a large number of volcanoes across the world which are volcanically active, but display little or only very low-level activity.<br><br>In the map we see the number of <em>significant</em> volcanic eruptions which occur in each country in a given year. A significant eruption is classified as one that meets at least one of the following criteria: caused fatalities, caused moderate damage (approximately $1 million or more), with a <a href=\"https://ourworldindata.org/natural-disasters#volcanic-explosivity-index-vei\">Volcanic Explosivity Index</a> of 6 or larger, caused a tsunami, or was associated with a major earthquake.{ref}This data is sourced from the The <a href=\"https://www.ngdc.noaa.gov/nndc/servlet/ShowDatasets?dataset=102557&search_look=50&display_look=50\">Significant Volcanic Eruption Database</a> is a global listing of over 500 significant eruptions.{/ref}</p>\n\n\n\n<p>Estimates of volcanic eruptions are available dating back as early as 1750 BCE, however, the data completeness for long historic events will be much lower than in the recent past.</p>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/significant-volcanic-eruptions\"></iframe></figure>\n\n\n\n<h4>Deaths from volcanic eruptions</h4>\n\n\n\n<p>In the visualization we see the number of deaths from significant volcanic eruptions across the world. Using the timeline on the map we can see the frequency of volcanic activity deaths over time. <br><br>If we look at deaths over the past century we see several high-impact events: the <a href=\"https://en.wikipedia.org/wiki/Armero_tragedy\">Nevado del Ruiz eruption</a> in Colombia in 1985; the Mount Pel\u00e9e eruption in Martinique in 1902; and <a href=\"https://en.wikipedia.org/wiki/1883_eruption_of_Krakatoa\">1883 eruption of Krakatoa</a> in Indonesia.</p>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/deaths-from-volcanic-eruptions\"></iframe></figure>\n\n\n\n<h3>Landslides</h3>\n\n\n\n<p>This visualization \u2013 sourced from the NASA Socioeconomic Data And Applications Center (SEDAC) \u2013 shows the distribution of mortality risk from landslides across the world.<br><br>As we would expect, the risks of landslides are much greater close to highly mountainous regions with dense neighbouring populations. This makes the mortality risk highest across the Andes region in South America, and the Himalayas across Asia.</p>\n\n\n\n<div class=\"wp-block-image\"><figure class=\"aligncenter\"><a href=\"http://ourworldindata.org/app/uploads/2014/06/ourworldindata_global-landslide-mortality-risk-distribution-\u2013-sedac-nasa0.png\"><img loading=\"lazy\" width=\"712\" height=\"550\" src=\"http://ourworldindata.org/app/uploads/2014/06/ourworldindata_global-landslide-mortality-risk-distribution-\u2013-sedac-nasa0-712x550.png\" alt=\"Global Landslide Mortality Risk Distribution \u2013\u00a0SEDAC (NASA)0\" class=\"wp-image-4331\" srcset=\"https://owid.cloud/app/uploads/2014/06/ourworldindata_global-landslide-mortality-risk-distribution-\u2013-sedac-nasa0-712x550.png 712w, https://owid.cloud/app/uploads/2014/06/ourworldindata_global-landslide-mortality-risk-distribution-\u2013-sedac-nasa0-150x115.png 150w, https://owid.cloud/app/uploads/2014/06/ourworldindata_global-landslide-mortality-risk-distribution-\u2013-sedac-nasa0-400x308.png 400w, https://owid.cloud/app/uploads/2014/06/ourworldindata_global-landslide-mortality-risk-distribution-\u2013-sedac-nasa0.png 1024w\" sizes=\"(max-width: 712px) 100vw, 712px\" /></a><figcaption>Global landslide mortality risk distribution \u2013 SEDAC (NASA){ref}<br> This is from the NASA Socioeconomic Data And Applications Center (SEDAC) hosted by the Center for International Earth Science Information Network (CIESIN) at Columbia University. This map is online at their website <a href=\"http://sedac.ciesin.columbia.edu/data/set/ndh-landslide-mortality-risks-distribution/maps\">here</a>.<br> This document is licensed under a <a href=\"http://creativecommons.org/licenses/by/3.0/\">Creative Commons 3.0 Attribution License</a>.{/ref}</figcaption></figure></div>\n\n\n\n<h3>Famines & Droughts</h3>\n\n\n\n<p>We cover the history of Famines in detail in our dedicated entry <a href=\"https://ourworldindata.org/famines\"><strong>here</strong></a>. For this research we assembled a new global dataset on famines from the 1860s until 2016.</p>\n\n\n\n<p>In the visualization shown here we see trends in drought severity in the United States. Given is the annual data of drought severity, plus the 9-year average.<br><br>This is measured by the The Palmer Drought Severity Index: the average moisture conditions observed between 1931 and 1990 at a given location is given an index value of zero. A positive value means conditions are wetter than average, while a negative value is drier than average. A value between -2 and -3 indicates moderate drought, -3 to -4 is severe drought, and -4 or below indicates extreme drought.</p>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/drought-severity-index-us\"></iframe></figure>\n\n\n\n<h3>Hurricanes, Tornados, and Cyclones</h3>\n\n\n\n<h4>Long-term trends in deaths from US weather events</h4>\n\n\n\n<p>Trends in the US provide some of the most complete data on impacts and deaths from weather events over time.<br><br>This chart shows death rates from lightning and other weather events in the United States over time. Death rates are given as the number of deaths per million individuals. Over this period, we see that on average each has seen a significant decline in death rates. This is primarily the result of improved infrastructure, predicted and response systems to disaster events.</p>\n\n\n\n<figure><iframe loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/fatality-rates-in-the-us-due-to-weather-events\" width=\"300\" height=\"150\"></iframe></figure>\n\n\n\n<h4>Intensity of North Atlantic Hurricanes</h4>\n\n\n\n<p>A key metric for assessing hurricane severity is their intensity, and the power they carry.<br><br>The visualizations here use two metrics to define this: the accumulated cyclone energy (ACE), an index that measures the activity of a cyclone season; and the power dissipation index of cyclones.</p>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/ace-north-atlantic-hurricanes\"></iframe></figure>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/cyclone-power-dissipation-index\"></iframe></figure>\n\n\n\n<h3>Extreme precipitation and flooding</h3>\n\n\n\n<h4>Precipitation anomalies</h4>\n\n\n\n<p>In the visualization shown we see the global precipitation anomaly each year; trends in the US-specific anomaly can be found <a href=\"https://ourworldindata.org/grapher/precipitation-anomaly\">here</a>. </p>\n\n\n\n<p>This precipitation anomaly is measured relative to the century average from 1901 to 2000. Positive values indicate a wetter year than normal; negative values indicate a drier year.</p>\n\n\n\n<p>Also shown is US-specific data on the share of land area which experiences unusually high precipitation in any given year. </p>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/global-precipitation-anomaly\"></iframe></figure>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/unusually-high-precipitation-usa\"></iframe></figure>\n\n\n\n<h4>Precipitation extremes</h4>\n\n\n\n<p>We can look at precipitation anomalies over the course of year, however, flooding events are often caused by intense rainfall over much shorter periods. Flooding events tend to occur when there is extremely high rainfall over the course of hours or days.</p>\n\n\n\n<p>The visualization here shows the extent of extreme one-day precipitation in the US. What we see is a general upwards trend in the extent of extreme rainfall in recent decades.</p>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/extreme-one-day-precipitation-usa\"></iframe></figure>\n\n\n\n<h3>Extreme Temperature (Heat & Cold)</h3>\n\n\n\n<p>Extreme temperature risks to human health and mortality can result from both exposure to extreme heat and cold.</p>\n\n\n\n<h4>Heatwaves and high temperatures</h4>\n\n\n\n<p>In the visualizations shown here we see long-term data on heatwaves and unusually high temperatures in the United States.</p>\n\n\n\n<p>Overall we see there is significant year-to-year variability in the extent of heatwave events. What stands out over the past century of data was the <a href=\"https://en.wikipedia.org/wiki/1936_North_American_heat_wave\">1936 North American heatwave</a> \u2013 one of the most extreme heat wave events in modern history, which coincided with the Great Depression and Dust Bowl of the 1930s.<br><br>When we look at the trajectory of unusually high summer temperatures over time (defined as ‘unusually high’ in the context of historical records) we see an upward trend in recent decades.</p>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/heat-wave-index-usa\"></iframe></figure>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/high-summer-temp-usa\"></iframe></figure>\n\n\n\n<h4>Cold temperatures</h4>\n\n\n\n<p>Whilst we often focus on heatwave and warm temperatures in relation to weather extremes, extremely low temperatures can often have a high toll on human health and mortality. <br><br>In the visualization here we show trends in the share of US land area experiencing unusually low winter temperatures. In recent years there appears to have been a declining trend in the extent of the US experiencing particularly cold winters.</p>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/low-winter-temps-usa\"></iframe></figure>\n\n\n\n<h3>Wildfires</h3>\n\n\n\n<h4>US Wildfires</h4>\n\n\n\n<p>How are the frequency and extent of wildfires in the United States changing over time?</p>\n\n\n\n<p>In the charts below we provide three overviews: the number of wildfires, the total acres burned, and the average acres burned per wildfire. This data is shown from 1983 onwards, when comparable data recording began.</p>\n\n\n\n<p>Over the past 30-35 years we notice three general trends in the charts below (although there is significant year-to-year variability):</p>\n\n\n\n<ul><li>on average, the annual number of wildfires has not changed much;</li><li>on average, the total acres burned has increased from the 1980s and 1990s into the 21st century;</li><li>the combination of these two factors suggest that the average acres burned <em>per wildfire</em> has increased.</li></ul>\n\n\n\n<p>There has been significant media coverage of the long-run statistics of US wildfires reported by the National Interagency Fire Center (NIFC). The original statistics are available back to the year 1926. When we look at this long-term series it suggests there has been a significant decline in acres burned over the past century. However, the NIFC explicitly state:</p>\n\n\n\n<blockquote class=\"wp-block-quote\"><p>Prior to 1983, sources of these figures are not known, or cannot be confirmed, and were not derived from the current situation reporting process. As a result the figures prior to 1983 should not be compared to later data.</p></blockquote>\n\n\n\n<p>Representatives from the NIFC have again confirmed (see the Carbon Brief’s coverage <strong><a href=\"https://www.carbonbrief.org/factcheck-how-global-warming-has-increased-us-wildfires\" target=\"_blank\" rel=\"noopener noreferrer\">here</a></strong>) that these historic statistics are not comparable to those since 1983. The lack of reliable methods of measurement and reporting mean some historic statistics may in fact be double or triple-counted in national statistics.</p>\n\n\n\n<p>This means we cannot compare the recent data below with old, historic records. But it also doesn’t confirm that acres burned today are higher than the first half of the 20th century. Historically, fires were an <a rel=\"noopener noreferrer\" href=\"https://www.fs.fed.us/research/sustain/docs/national-reports/2003/data/documents/Indicator%2015/Indicator%2015.pdf\" target=\"_blank\">often-used method</a> of clearing land for agriculture, for example. It’s not implausible to expect that wildfires of the past may have been larger than today but the available data is not reliable enough to confirm this.</p>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/wildfire-numbers-usa\"></iframe></figure>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/acres-burned-usa\"></iframe></figure>\n\n\n\n<figure><iframe style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/acres-burned-per-wildfire-usa\"></iframe></figure>\n\n\n\n<h3>Lightning</h3>\n\n\n\n<h4>Long-term trends in US lightning strikes</h4>\n\n\n\n<p>This chart shows the declining death rate due to lightning strikes in the US.<br><br>In the first decade of the 20th century the average annual rate of deaths was 4.5 per million people in the US. In the first 15 years of the 21st century the death rate had declined to an average of 0.12 deaths per million. This is a 37-fold reduction in the likelihood of being killed by lightning in the US.</p>\n\n\n\n<figure><iframe loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/fatality-rates-due-to-lightning-in-the-us\" width=\"300\" height=\"150\"></iframe></figure>\n\n\n\n<h4>Lightning strikes across the world</h4>\n\n\n\n<p>The map here shows the distribution of lightning strikes across the world. This is given as the lightning strike density \u2013 the average strikes per square kilometer each year. <br><br>In particular we see the high frequency of strikes across the Equatorial regions, especially across central Africa.</p>\n\n\n\n<div class=\"wp-block-image\"><figure class=\"aligncenter\"><a href=\"http://ourworldindata.org/app/uploads/2014/06/ourworldindata_world-map-of-frequency-of-lightning-strikes-\u2013-wikipedia-nasa-data0.png\"><img loading=\"lazy\" width=\"750\" height=\"465\" src=\"http://ourworldindata.org/app/uploads/2014/06/ourworldindata_world-map-of-frequency-of-lightning-strikes-\u2013-wikipedia-nasa-data0-750x465.png\" alt=\"World Map of Frequency of lightning strikes \u2013 Wikipedia [NASA data]0\" class=\"wp-image-4334\" srcset=\"https://owid.cloud/app/uploads/2014/06/ourworldindata_world-map-of-frequency-of-lightning-strikes-\u2013-wikipedia-nasa-data0-750x465.png 750w, https://owid.cloud/app/uploads/2014/06/ourworldindata_world-map-of-frequency-of-lightning-strikes-\u2013-wikipedia-nasa-data0-150x93.png 150w, https://owid.cloud/app/uploads/2014/06/ourworldindata_world-map-of-frequency-of-lightning-strikes-\u2013-wikipedia-nasa-data0-400x248.png 400w, https://owid.cloud/app/uploads/2014/06/ourworldindata_world-map-of-frequency-of-lightning-strikes-\u2013-wikipedia-nasa-data0.png 1290w\" sizes=\"(max-width: 750px) 100vw, 750px\" /></a><figcaption>World map of frequency of lightning strikes \u2013 Wikipedia (NASA data){ref}<br> This map is taken from <a href=\"http://en.wikipedia.org/wiki/File:Global_lightning_strikes.png\">Wikipedia here</a>.<br> This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unreported license.{/ref}</figcaption></figure></div>\n\n\n\n<h2>Economic costs</h2>\n\n\n\n<h3>Global disaster costs</h3>\n\n\n\n<p>Natural disasters not only have devastating impacts in terms of the loss of human life, but can also cause severe destruction with economic costs.<br><br>When we look at global economic costs over time in <a href=\"https://ourworldindata.org/grapher/damage-costs-from-natural-disasters\">absolute terms</a> we tend to see rising costs. But, importantly, the world \u2013 and most countries \u2013 have also <a href=\"https://ourworldindata.org/economic-growth\">gotten richer</a>. Global gross domestic product has increased <a href=\"https://ourworldindata.org/grapher/world-gdp-over-the-last-two-millennia?time=1900..2015\">more than four-fold</a> since 1970. We might therefore expect that for any given disaster, the absolute economic costs could be higher than in the past. </p>\n\n\n\n<p>A more appropriate metric to compare economic costs over time is to look at them in relation to GDP. This is the <a href=\"https://sdg-tracker.org/cities#11.5.2\">indicator adopted</a> by all countries as part of the UN Sustainable Development Goals to monitor progress on resilience to disaster costs.<br><br>In the chart, we see global direct disaster losses given as a share of GDP.</p>\n\n\n\n<iframe src=\"https://ourworldindata.org/explorers/natural-disasters?facet=none&country=~OWID_WRL&Disaster+Type=All+disasters&Impact=Economic+damages+%28%25+GDP%29&Timespan=Annual&Per+capita=false&hideControls=true\" loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\"></iframe>\n\n\n\n<h3>Disaster costs by country</h3>\n\n\n\n<p>Since economic losses from disasters in relation to GDP is the <a href=\"https://sdg-tracker.org/cities#11.5.2\">indicator adopted</a> by all countries within the UN Sustainable Development Goals, this data is also now reported for each country.<br><br>The map shows direct disaster costs for each country as a share of its GDP. Here we see large variations by country \u2013 a 100-fold difference ranging from less than 0.05% to 5%. This data can be found in absolute terms <a href=\"https://ourworldindata.org/grapher/direct-disaster-economic-loss?tab=chart\"><strong>here</strong></a>. </p>\n\n\n\n<figure><iframe src=\"https://ourworldindata.org/grapher/direct-disaster-loss-as-a-share-of-gdp\"></iframe></figure>\n\n\n\n<h2>Not all deaths are equal: How many deaths make a natural disaster newsworthy?</h2>\n\n\n\n<p>How many deaths does it take for a natural disaster to be newsworthy? </p>\n\n\n\n<p>This is a question researchers Thomas Eisensee and David Str\u00f6mberg asked in a 2007 study.{ref}Eisensee, T., & Str\u00f6mberg, D. (2007). News droughts, news floods, and US disaster relief. The Quarterly Journal of Economics, 122(2), 693-728. Online here: <a rel=\"noreferrer noopener\" href=\"http://perseus.iies.su.se/~dstro/wpdisasters.pdf\" target=\"_blank\">http://perseus.iies.su.se/~dstro/wpdisasters.pdf</a>{/ref} </p>\n\n\n\n<p>The two authors found that for every person killed by a volcano, nearly 40,000 people have to die of a food shortage to get the same probability of coverage in US televised news.{ref}As is mentioned below in more detail, this figure is controlled for other factors (i.e. country, year, month, and number of people affected).{/ref} </p>\n\n\n\n<h4>The type of disaster matters</h4>\n\n\n\n<p>In other words, the <em>type</em> of disaster matters to how newsworthy networks find it to be. The visualizations show the extent of this observed “news effect”. The chart shows the proportion of each type of disaster that receives news coverage, and the second shows the “casualties ratio”, which tells us\u2014all else equal\u2014how many casualties would make media coverage equally likely for each type of disaster.</p>\n\n\n\n<iframe loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/news-coverage-of-disasters\" width=\"300\" height=\"150\"></iframe>\n\n\n\n<iframe loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/how-many-deaths-does-it-take-for-a-disaster-to-receive-news-coverage\" width=\"300\" height=\"150\"></iframe>\n\n\n\n<p>The study, which primarily set out to examine mass media\u2019s influence on US natural disaster response, considered over 5,000 natural disasters{ref}The study used a database compiled by the Centre for Research on the Epidemiology of Disasters, where an event qualifies as a disaster if at least one of the following criteria are fulfilled: ten or more people are reported, killed; 100 or more people are reported affected, injured, and/or homeless; there has been a declaration of a state of emergency; or there has been a call for international assistance.{/ref} and 700,000 news stories from the major US national broadcast networks (ABC, CBS, NBC, and CNN) between 1968 and 2002. </p>\n\n\n\n<p>The findings tells us, among other important things, that networks tend to be selective in their coverage and attention is not reflecting the severity and number of people killed or affected by a natural disaster.<br></p>\n\n\n\n<p>Instead of considering the objective damage caused by natural disasters, networks tend to look for disasters that are \u201crife with drama\u201d, as one New York Times article put it{ref}Eisensee, T., & Str\u00f6mberg, D. (2007). News droughts, news floods, and US disaster relief. The Quarterly Journal of Economics, 122(2), 693-728. Online here: <a rel=\"noreferrer noopener\" href=\"http://perseus.iies.su.se/~dstro/wpdisasters.pdf\" target=\"_blank\">http://perseus.iies.su.se/~dstro/wpdisasters.pdf</a>{/ref}\u2014hurricanes, tornadoes, forest fires, earthquakes all make for splashy headlines and captivating visuals. </p>\n\n\n\n<p>Thanks to this selectivity, less “spectacular” but often times more deadly natural disasters tend to get passed over. <a href=\"https://ourworldindata.org/famines/\">Food shortages</a>, for example, result in the most casualties and affect the most people per incident{ref}Based on the study\u2019s analysis of data compiled by the Centre for Research on the Epidemiology of Disasters.{/ref} but their onset is more gradual than that of a volcanic explosion or sudden earthquake. As a result, food shortages are covered only 3% of the time while a comparatively indulgent 30% of earthquakes and volcanic events get their time in the spotlight. </p>\n\n\n\n<p>Additionally, when the researchers \u201chold all else equal\u201d by controlling for factors such as yearly trends in news intensity and the number of people killed and affected, the difference in coverage is even more pronounced.</p>\n\n\n\n<p>This bias for the spectacular is not only unfair and misleading, but also has the potential to misallocate attention and aid. Disasters that happen in an instant leave little time for preventative intervention. On the other hand, the gradual disasters that tend to affect more lives build up slowly, allowing more time for preventative measures to be taken. However, in a Catch-22 situation, the gradual nature of these calamities is also what prevents them from garnering the media attention they deserve.</p>\n\n\n\n<h4>And the location of the disaster matters too</h4>\n\n\n\n<p>There are other biases, too. Eisensee and Str\u00f6mberg found that while television networks cover more than 15% of the disasters in Europe and South Central America, they show less than 5% of the disasters in Africa and the Pacific. Disasters in Africa tend to get less coverage than ones in Asia because they are less “spectacular”, with more droughts and food shortages occurring there relative to Asia. </p>\n\n\n\n<p>However, after controlling for disaster type, along with other factors such as the number killed and the timing of the news, there is no significant difference between coverage of African and Asian disasters. Instead, a huge difference emerges between coverage of Africa, Asia, and the Pacific on the one hand, and Europe and South and Central America, on the other. </p>\n\n\n\n<p>According to the researchers\u2019 estimates, 45 times as many people would have to die in an African disaster for it to garner the same media attention as a European one. The two visualizations show the extent of this bias.</p>\n\n\n\n<p>ABC News\u2019s slogan is \u201cSee the whole picture\u201d and CNN\u2019s is \u201cGo there\u201d, but good follow-up questions might be: what exactly, and where?<br></p>\n\n\n\n<iframe loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/news-coverage-of-disasters-by-continent\" width=\"300\" height=\"150\"></iframe>\n\n\n\n<iframe loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/how-many-deaths-does-it-take-for-a-disaster-in-different-continents-to-receive-news-coverage\" width=\"300\" height=\"150\"></iframe>\n\n\n\n<h2>Link between poverty and deaths from natural disasters</h2>\n\n\n\n<p>One of the major successes over the past century has been the dramatic <a href=\"https://ourworldindata.org/natural-disasters#number-of-deaths-from-natural-disasters\">decline in global deaths</a> from natural disasters \u2013 this is despite the fact that the <a href=\"https://owid.cloud/world-population-growth\">human population</a> has increased rapidly over this period.</p>\n\n\n\n<p>Behind this improvement has been the improvement in living standards; access to and development of resilient infrastructure; and effective response systems. These factors have been driven by an <a href=\"https://owid.cloud/economic-growth\">increase in incomes</a> across the world.</p>\n\n\n\n<p>What remains true today is that populations in low-income countries \u2013 those where a large percentage of the population still live in <a href=\"https://owid.cloud/extreme-poverty\">extreme poverty</a>, or score low on the <a href=\"https://ourworldindata.org/human-development-index/\">Human Development Index</a> \u2013 are more vulnerable to the effects of natural disasters. </p>\n\n\n\n<p>We see this effect in the visualization shown. This chart shows the death rates from natural disasters \u2013 the number of deaths per 100,000 population \u2013 of countries grouped by their <a href=\"http://www.healthdata.org/taxonomy/glossary/socio-demographic-index-sdi\">socio-demographic index</a> (SDI). SDI is a metric of development, where low-SDI denotes countries with low standards of living.</p>\n\n\n\n<p>What we see is that the large spikes in death rates occur almost exclusively for countries with a low or low-middle SDI. Highly developed countries are much more resilient to disaster events and therefore have a consistently low death rate from natural disasters.</p>\n\n\n\n<p>Note that this does not mean low-income countries have high death tolls from disasters year-to-year: the data here shows that in most years they also have very low death rates. But when low-frequency, high-impact events do occur they are particularly vulnerable to its effects.</p>\n\n\n\n<p>Overall development, poverty alleviation, and knowledge-sharing of how to increase resilience to natural disasters will therefore be key to reducing the toll of disasters in the decades to come.</p>\n\n\n\n<figure><iframe src=\"https://ourworldindata.org/grapher/death-rates-natural-disasters\"></iframe></figure>\n\n\n\n<h2>Definitions & Metrics</h2>\n\n\n\n<h4>Hurricanes, cyclones & typhoons</h4>\n\n\n\n<p>There are multiple terms used to describe extreme weather events: hurricanes, typhoons, cyclones and tornadoes. What is the difference between these terms, and how are they defined?</p>\n\n\n\n<p>The terms <strong>hurricane</strong>, <strong>cyclone</strong> and <strong>typhoon</strong> all refer to the same thing; they can be used interchangeably. Hurricanes and typhoons are both described as the weather phenomenon ‘tropical cyclone’. A tropical cyclone is a weather event which originates over tropical or subtropical waters and results in a rotating, organized system of clouds and thunderstorms. Its circulation patterns should be closed and low-level.</p>\n\n\n\n<p>The choice of terminology is location-specific and depends on where the storm originates. The term <em>hurricane</em> is used to describe a tropical cyclone which originates in the North Atlantic, central North Pacific, and eastern North Pacific. When it originates in the Northwest Pacific, we call it <em>typhoon</em>. In the South Pacific and Indian Ocean the general term <em>tropical cyclone</em> is used.</p>\n\n\n\n<p>In other words, <a href=\"https://oceanservice.noaa.gov/facts/cyclone.html\" target=\"_blank\" rel=\"noopener noreferrer\">the only difference</a> between a hurricane and typhoon is where it occurs.</p>\n\n\n\n<h4>When does a storm become a hurricane?</h4>\n\n\n\n<p>The characteristics of a hurricane are described in detail at the <a href=\"https://www.nasa.gov/audience/forstudents/k-4/stories/nasa-knows/what-are-hurricanes-k4.html\" target=\"_blank\" rel=\"noopener noreferrer\">NASA website</a>.</p>\n\n\n\n<p>A hurricane evolves from a tropical disturbance or storm based on a threshold of wind speed.</p>\n\n\n\n<p>A tropical disturbance arises over warm ocean waters. It can grow into a tropical depression which is an area of rotating thunderstorms with winds up to 62 kilometres (38 miles) per hour. From there, a depression evolves into a tropical storm if its wind speed reaches 63 km/hr (39 mph).</p>\n\n\n\n<p>Finally a hurricane is formed when a tropical storm reaches a wind speed of 119 km/hr (74 mph).</p>\n\n\n\n<h4>Difference between hurricanes and tornadoes</h4>\n\n\n\n<p>But, hurricanes/typhoons/cyclones <em>are</em> distinctly different from tornadoes.</p>\n\n\n\n<p>Whilst hurricanes and tornadoes have a characteristic circulatory wind patterns, they are very different weather systems. The main <a href=\"https://pmm.nasa.gov/resources/faq/what-difference-between-tornado-and-hurricane\" target=\"_blank\" rel=\"noopener noreferrer\">difference between the systems</a> is scale (tornadoes are small-scale circulatory systems; hurricanes are large-scale). These differences are highlighted in the table below:</p>\n\n\n\n<table id=\"tablepress-99\" class=\"tablepress tablepress-id-99\">\n<thead>\n<tr class=\"row-1 odd\">\n\t<th class=\"column-1\"> </th><th class=\"column-2\">Hurricanes/typhoons</th><th class=\"column-3\">Tornadoes</th>\n</tr>\n</thead>\n<tbody class=\"row-hover\">\n<tr class=\"row-2 even\">\n\t<td class=\"column-1\"><strong>Diameter</td><td class=\"column-2\">60 to 1000s miles</td><td class=\"column-3\">Up to 1 - 1.5 miles (usually less)</td>\n</tr>\n<tr class=\"row-3 odd\">\n\t<td class=\"column-1\"><strong>Wind speed</td><td class=\"column-2\">74 to 200 mph</td><td class=\"column-3\">40 to 300 mph</td>\n</tr>\n<tr class=\"row-4 even\">\n\t<td class=\"column-1\"><strong>Lifetime</td><td class=\"column-2\">Long (usually days)</td><td class=\"column-3\">Very short (usually minutes)</td>\n</tr>\n<tr class=\"row-5 odd\">\n\t<td class=\"column-1\"><strong>Travel distance</td><td class=\"column-2\">Long (100 metres to 100 miles)</td><td class=\"column-3\">Short distances</td>\n</tr>\n<tr class=\"row-6 even\">\n\t<td class=\"column-1\"><strong>Environmental impact</td><td class=\"column-2\">Can have impact on wider environment and atmospheric patterns.</td><td class=\"column-3\">Local (although can be very high impact). Little wider impact on atmospheric systems or environment.</td>\n</tr>\n</tbody>\n</table>\n\n\n\n\n<h4>Volcanic Explosivity Index (VEI)</h4>\n\n\n\n<p>The intensity or size of volcanic eruptions are most commonly defined by a metric termed the ‘volcanic explosivity index (VEI)’. The VEI is derived based on the erupted mass or deposit of an eruption. The scale for VEI was outlined by Newhall & Self (1982), but is now commonly adopted in geophysical reporting.{ref}Newhall, C.G. and Self, S (1982). The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism.<em>Jour Geophys Res (Oceans & Atmospheres)</em>, 87:1231-1238. Available at: <a href=\"https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC087iC02p01231\">https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC087iC02p01231</a>.{/ref}</p>\n\n\n\n<p>The table below provides a summary (from the <a href=\"https://www.ngdc.noaa.gov/nndc/DescribeField.jsp?dataset=102557&s=77&field_name=HAZ.VOLCANO_EVENT.VEI\" target=\"_blank\" rel=\"noopener noreferrer\">NOAA’s National Geophysical Data Center</a>) of the characteristics of eruptions of different VEI values. A ‘Significant Volcanic Eruption’ is often defined as an eruption with a VEI value of 6 or greater. Historic eruptions that were definitely explosive, but carry no other descriptive information are assigned a default VEI of 2.</p>\n\n\n\n<table id=\"tablepress-98\" class=\"tablepress tablepress-id-98\">\n<thead>\n<tr class=\"row-1 odd\">\n\t<th class=\"column-1\">Volcanic Explosivity Index (VEI)</th><th class=\"column-2\">General description</th><th class=\"column-3\">Cloud Column Height (km)</th><th class=\"column-4\">Volume (m\u00b3)</th><th class=\"column-5\">Qualititative Description</th><th class=\"column-6\">Classification</th><th class=\"column-7\">How frequent?</th><th class=\"column-8\">Example</th>\n</tr>\n</thead>\n<tbody class=\"row-hover\">\n<tr class=\"row-2 even\">\n\t<td class=\"column-1\">0</td><td class=\"column-2\">Non-explosive</td><td class=\"column-3\">< 0.1 km</td><td class=\"column-4\">1x10\u2074</td><td class=\"column-5\">Gentle</td><td class=\"column-6\">Hawaiian</td><td class=\"column-7\">daily</td><td class=\"column-8\">Kilauea</td>\n</tr>\n<tr class=\"row-3 odd\">\n\t<td class=\"column-1\">1</td><td class=\"column-2\">Small</td><td class=\"column-3\">0.1 - 1 km</td><td class=\"column-4\">1x10\u2076</td><td class=\"column-5\">Effusive</td><td class=\"column-6\">Haw/Strombolian</td><td class=\"column-7\">daily</td><td class=\"column-8\">Stromboli</td>\n</tr>\n<tr class=\"row-4 even\">\n\t<td class=\"column-1\">2</td><td class=\"column-2\">Moderate</td><td class=\"column-3\">1 - 5 km</td><td class=\"column-4\">1x10\u2077</td><td class=\"column-5\">Explosive</td><td class=\"column-6\">Strom/Vulcanian</td><td class=\"column-7\">weekly</td><td class=\"column-8\">Galeras, 1992</td>\n</tr>\n<tr class=\"row-5 odd\">\n\t<td class=\"column-1\">3</td><td class=\"column-2\">Moderate-Large</td><td class=\"column-3\">3 - 15 km</td><td class=\"column-4\">1x10\u2078</td><td class=\"column-5\">Explosive</td><td class=\"column-6\">Vulcanian</td><td class=\"column-7\">annually</td><td class=\"column-8\">Ruiz, 1985</td>\n</tr>\n<tr class=\"row-6 even\">\n\t<td class=\"column-1\">4</td><td class=\"column-2\">Large</td><td class=\"column-3\">10 - 25 km</td><td class=\"column-4\">1x10\u2079</td><td class=\"column-5\">Explosive</td><td class=\"column-6\">Vulc/Plinian</td><td class=\"column-7\">10's of years</td><td class=\"column-8\">Galunggung, 1982</td>\n</tr>\n<tr class=\"row-7 odd\">\n\t<td class=\"column-1\">5</td><td class=\"column-2\">Very Large</td><td class=\"column-3\">> 25 km</td><td class=\"column-4\">1x10\u00b9\u2070</td><td class=\"column-5\">Cataclysmic</td><td class=\"column-6\">Plinian</td><td class=\"column-7\">100's of years</td><td class=\"column-8\">St. Helens, 1981</td>\n</tr>\n<tr class=\"row-8 even\">\n\t<td class=\"column-1\">6</td><td class=\"column-2\"></td><td class=\"column-3\">> 25 km</td><td class=\"column-4\">1x10\u00b9\u00b9</td><td class=\"column-5\">Paroxysmal</td><td class=\"column-6\">Plin/Ultra-Plinian</td><td class=\"column-7\">100's of years</td><td class=\"column-8\">Krakatau, 1883</td>\n</tr>\n<tr class=\"row-9 odd\">\n\t<td class=\"column-1\">7</td><td class=\"column-2\"></td><td class=\"column-3\">> 25 km</td><td class=\"column-4\">1x10\u00b9\u00b2</td><td class=\"column-5\">Colossal</td><td class=\"column-6\">Ultra-Plinian</td><td class=\"column-7\">1000's of years</td><td class=\"column-8\">Tambora, 1815</td>\n</tr>\n<tr class=\"row-10 even\">\n\t<td class=\"column-1\">8</td><td class=\"column-2\"></td><td class=\"column-3\">> 25 km</td><td class=\"column-4\">>1x10\u00b9\u00b2</td><td class=\"column-5\">Colossal</td><td class=\"column-6\">Ultra-Plinian</td><td class=\"column-7\">10,000's of years</td><td class=\"column-8\">Yellowstone, 2 Ma</td>\n</tr>\n</tbody>\n</table>\n\n\n\n\n<h2>Data Quality</h2>\n\n\n\n<h4>Number of reported disaster events</h4>\n\n\n\n<p>A key issue of data quality is the consistency of even reporting over time. For long-term trends in natural disaster events we know that reporting and recording of events today is much more advanced and complete than in the past. This can lead to significant underreporting or uncertainty of events in the distant past.<br><br>In the chart here we show data on the number of <em>reported</em> natural disasters over time. <br><br>This change over time can be influenced by a number of factors, namely the increased coverage of reporting over time. The increase over time is therefore not directly reflective of the <em>actual</em> trend in disaster events.</p>\n\n\n\n<figure><iframe loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/number-of-natural-disaster-events\" width=\"300\" height=\"150\"></iframe></figure>\n\n\n\n<h4>Number of reported disasters by type</h4>\n\n\n\n<p>This same data is shown here as the number of <em>reported</em> disaster events by type. Again, the incompleteness of historical data can lead to significant underreporting in the past. The increase over time is therefore not directly reflective of the <em>actual</em> trend in disaster events.</p>\n\n\n\n<figure><iframe loading=\"lazy\" style=\"width: 100%; height: 600px; border: 0px none;\" src=\"https://ourworldindata.org/grapher/natural-disasters-by-type\" width=\"300\" height=\"150\"></iframe></figure>\n\n\n\n<h2>Data Sources</h2>\n\n\n\n<p>Wikipedia has several lists of disasters, and an overview of these lists can be found at <a href=\"http://en.wikipedia.org/wiki/Lists_of_disasters\">List of Disasters</a>.</p>\n\n\n\n<h4>Deaths from natural disasters</h4>\n\n\n\n<h5>Institute for Health Metrics and Evaluation (IHME), Global Burden of Disease</h5>\n\n\n\n<ul><li><strong>Data:</strong> IHME provides data on deaths and death rates from natural disasters</li><li><strong>Geographical coverage:</strong> Global \u2013 country and regional level</li><li><strong>Time span:</strong> 1990 onwards</li><li><strong>Available at:</strong> <a href=\"http://www.emdat.be/\">IHME, GBD</a></li></ul>\n\n\n\n<h4>Multiple Types of Disasters</h4>\n\n\n\n<h5>EM-DAT \u2013 The International Disaster Database</h5>\n\n\n\n<ul><li><strong>Data:</strong> EM-DAT is a catalogue of disasters listing detailed information on natural disasters: droughts (famines), earthquakes, epidemics, extreme temperatures, floods, insect infestations, mass movement (dry & wet), storms, volcanos, and wildfires. There is also a data section on technological disasters.</li><li><strong>Geographical coverage:</strong> Global \u2013 country and regional level (primarily cross-country data set, but also contains the name of the sub-national regions affected by disasters)</li><li><strong>Time span:</strong> 1900 onwards</li><li><strong>Available at:</strong> <a href=\"http://www.emdat.be\">EM-DAT</a></li><li><em>Raw data has to be requested but the <a href=\"http://web.archive.org/web/20150829055006/http://www.emdat.be:80/disaster-trends\">section on disaster trends</a> encompasses a number of visualizations (time series and maps).<br></em></li><li><em>EM-DAT is maintained by the <a href=\"https://web.archive.org/web/20190922043847/https://www.cred.be/\">Center for Research on the Epidemiology of Disasters (CRED)</a><br></em></li><li><em>EM-DAT data on the annual number of deaths and number of affected by drought, epidemics, earthquakes, extreme temperature, flood, storm, tsunami, plane crash by country is available at <strong>Gapminder</strong>.</em></li></ul>\n\n\n\n<h5>Earth Observatory by NASA \u2013 Natural Hazards</h5>\n\n\n\n<ul><li><strong>Data:</strong> Up to date information and satellite images on fires, storms, floods, volcanoes, earthquakes, and droughts</li><li><strong>Geographical coverage:</strong> Global</li><li><strong>Time span:</strong> Recent years \u2013 very up to date</li><li><strong>Available at:</strong> <a href=\"http://earthobservatory.nasa.gov/NaturalHazards/\">earthobservatory.nasa.gov/NaturalHazards</a></li></ul>\n\n\n\n<h5>Natural Hazards Data \u2013 U.S. National Oceanic and Atmospheric Administration’s National Geophysical Data Center (NGDC)</h5>\n\n\n\n<ul><li><strong>Data:</strong> Data and maps on many natural hazards including cyclones, tsunamis, earthquakes, volcanoes, and wildfires. It includes the ‘Global Significant Earthquake Database, 2150 B.C. to present’ (5500 events) and ‘The Significant Volcanic Eruption Database’ and \u2018Global Historical Tsunami Events and Runups\u2019 among many other datasets.</li><li><strong>Geographical coverage:</strong> Global \u2013 exact location</li><li><strong>Time span:</strong> Millennia</li><li><strong>Available at:</strong> Online <a href=\"http://www.ngdc.noaa.gov/hazard/hazards.shtml\">here</a></li><li class=\"no-bullet\"><em>Download maps as pdf or ArcIMS interactive maps, and data in tab-delimited data files or html.</em></li></ul>\n\n\n\n<h5>Global Risk Data Platform</h5>\n\n\n\n<ul><li><strong>Data:</strong> Spatial data on tropical cyclones and related storm surges, drought, earthquakes, biomass fires, floods, landslides, tsunamis and volcanic eruptions.</li><li><strong>Geographical coverage:</strong> Global</li><li><strong>Time span:</strong> Recent past</li><li><strong>Available at:</strong> The website can be found <a href=\"http://preview.grid.unep.ch\">here</a>.</li><li class=\"no-bullet\"><em>Users can visualize, download or extract data on past hazardous events, human & economical hazard exposure and risk from natural hazards.</em></li></ul>\n\n\n\n<h5>Socioeconomic Data and Applications Center (SEDAC) \u2013 by NASA</h5>\n\n\n\n<ul><li><strong>Data: </strong>Maps of natural hazards</li><li><strong>Geographical coverage: </strong>Global</li><li><strong>Time span: </strong>Recent years</li><li><strong>Available at: </strong>Online <a href=\"http://sedac.ciesin.columbia.edu/data/sets/browse?facets=theme:hazards\">here at the SEDAC website at Colombia University</a><strong><br></strong></li></ul>\n\n\n\n<h5>Center for Hazards & Risk Research at Columbia University</h5>\n\n\n\n<ul><li><strong>Hotspots:</strong> Risk levels calculated by combining hazard exposure with historical vulnerability for two indicators of elements at risk\u2014gridded population and Gross Domestic Product (GDP) per unit area\u2014for six major natural hazards: earthquakes, volcanoes, landslides, floods, drought, and cyclones</li><li><strong>Natural disaster profiles:</strong> Profiles for 13 countries provide information on sub-national areas at risk from natural hazards including cyclones, droughts, earthquakes, volcanoes, floods, and landslides.</li><li><strong>Geographical coverage: </strong>Global for hotspots data</li><li><strong>Time span: </strong>Recent past</li><li><strong>Available at: </strong>Online <a href=\"http://www.ldeo.columbia.edu/chrr/research/profiles/\">here</a><strong><br></strong></li></ul>\n\n\n\n<h4> Earthquakes</h4>\n\n\n\n<h5>Global Earthquake Model (GEM)</h5>\n\n\n\n<ul><li><strong>Data:</strong> GEM Global Historical Earthquake Catalogue (1000-1900) and the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009)</li><li><strong>Geographical coverage:</strong>Global</li><li><strong>Time span: </strong>1000 onwards</li><li><strong>Available at: </strong>Online <a href=\"http://web.archive.org/web/20130106062157/http://www.globalquakemodel.org:80/risk-global-components/exposure-database\">here</a><strong><br></strong></li></ul>\n\n\n\n<h4>Fire</h4>\n\n\n\n<h5>ATSR World Fire Atlas \u2013 by the European Space Agency (ESA)</h5>\n\n\n\n<ul><li><strong>Data: </strong>Monthly global fire maps</li><li><strong>Geographical coverage: </strong>Global</li><li><strong>Time span:</strong> 1995 onwards</li><li><strong>Available at: </strong>Online at the website of ESA <a href=\"http://due.esrin.esa.int/page_wfa.php\">here</a><strong><br></strong></li></ul>\n\n\n\n<h4>Tsunami</h4>\n\n\n\n<p>The <strong>Center for International Earth Science Information Network</strong> at the Earth Institute at Columbia University publishes data on the <a href=\"http://www.ciesin.columbia.edu/tsunami2004.html\">Population Affected by the Indian Ocean Tsunami</a> <em>(December 2004)</em>.</p>\n\n\n\n<h4>Floods</h4>\n\n\n\n<p><strong>Wikipedia</strong> has a <a href=\"http://en.wikipedia.org/wiki/List_of_deadliest_floods\">List of Deadliest Floods</a> and a <a href=\"http://en.wikipedia.org/wiki/List_of_floods\">List of Floods</a>.</p>\n\n\n\n<h4>Hurricanes</h4>\n\n\n\n<h5>Unisys Data on Hurricanes</h5>\n\n\n\n<ul><li><strong>Data:</strong> Data on the track of the storm plus a text-based table of tracking information. The table includes position in latitude and longitude, maximum sustained winds in knots, and central pressure in millibars.</li><li><strong>Geographical coverage:</strong> Atlantic, East Pacific, West Pacific, South Pacific, South Indian, and North Indian</li><li><strong>Time span:</strong> 1851 until now</li><li><strong>Available at:</strong> Online <a href=\"http://weather.unisys.com/hurricanes\">here</a></li><li class=\"no-bullet\"><em><em> This data set was used by Dean Yang (2008) \u2013 Coping with Disaster: The Impact of Hurricanes on International Financial Flows, 1970-2002. The B.E. Journal of Economic Analysis & Policy. Volume 8, Issue 1, ISSN (Online) 1935-1682, DOI: 10.2202/1935-1682.1903, June 2008. Online <a href=\"http://www.degruyter.com/view/j/bejeap.2008.8.1/bejeap.2008.8.1.1903/bejeap.2008.8.1.1903.xml?format=INT\">here</a>.</em></em></li></ul>\n\n\n\n<h5>National Climatic Data Center (NOAA)</h5>\n\n\n\n<ul><li><strong>Data:</strong> Data on the track of storms</li><li><strong>Geographical coverage:</strong> Global</li><li><strong>Time span:</strong> 1848 until now</li><li><strong>Available at:</strong> Online at <a href=\"http://www.ncdc.noaa.gov/ibtracs/index.php?name=wmo-data\">NOAA here</a></li></ul>\n\n\n\n<h4>Volcanoes</h4>\n\n\n\n<h5>National Geophysical Data Center (NGDC)</h5>\n\n\n\n<ul><li><strong>Data:</strong> Global listing of over 500 significant eruptions which includes information on the latitude, longitude, elevation, type of volcano, and last known eruption.</li><li><strong>Geographical coverage:</strong> Global</li><li><strong>Time span:</strong> 1750BC onwards</li><li><strong>Available at:</strong> Online at the <a href=\"https://www.ngdc.noaa.gov/nndc/servlet/ShowDatasets?dataset=102557&search_look=50&display_look=50\">Significant Volcanic Eruption Database.</a></li></ul>\n\n\n\n<h5>Smithsonian Institution’s Global Volcanism Program (GVP)</h5>\n\n\n\n<ul><li><strong>Data:</strong> Complete list of current and past activity for all volcanoes on the planet active during the last 10,000 years. Data includes eruption type, maximum Volcanic Explosivity Index, start and end dates (when known), and the type of evidence for the eruption.</li><li><strong>Geographical coverage:</strong> Global</li><li><strong>Time span:</strong> Past 10,000 years to present day</li><li><strong>Available at:</strong> Online at <a href=\"http://volcano.si.edu/search_eruption.cfm##\">the Volcanoes of the World Database</a></li><li><strong>Full reference:</strong> Global Volcanism Program, 2013. Volcanoes of the World, v. 4.7.3. Venzke, E (ed.). Smithsonian Institution. https://doi.org/10.5479/si.GVP.VOTW4-2013</li></ul>\n\n\n\n<h4>Lightning</h4>\n\n\n\n<h5>Lightning Maps</h5>\n\n\n\n<ul><li><strong>Data:</strong> Real-time tracking of lightning strikes</li><li><strong>Geographical coverage:</strong> Global</li><li><strong>Time span:</strong> Real-time</li><li><strong>Available at:</strong> Online <a href=\"http://www.lightningmaps.org/#m=oss;t=3;s=0;o=0;b=;ts=0;\">here</a></li></ul>\n", "protected": false }, "excerpt": { "rendered": "Where and from which disasters do people die? What can we do to prevent deaths from natural disasters?", "protected": false }, "date_gmt": "2022-12-07T08:30:00", "modified": "2023-11-08T15:57:23", "template": "", "categories": [ 44, 49, 188 ], "menu_order": 275, "ping_status": "closed", "authors_name": [ "Hannah Ritchie", "Pablo Rosado" ], "modified_gmt": "2023-11-08T15:57:23", "comment_status": "open", "featured_media": 27290, "featured_media_paths": { "thumbnail": "/app/uploads/2019/11/Annual-deaths-by-natural-disaster-150x90.png", "medium_large": "/app/uploads/2019/11/Annual-deaths-by-natural-disaster-768x459.png" } } |