variables
Data license: CC-BY
14 rows where datasetId = 5515 sorted by id descending
This data as json, CSV (advanced)
Suggested facets: createdAt, display, createdAt (date), updatedAt (date)
id ▲ | name | unit | description | createdAt | updatedAt | code | coverage | timespan | datasetId | sourceId | shortUnit | display | columnOrder | originalMetadata | grapherConfigAdmin | shortName | catalogPath | dimensions | schemaVersion | processingLevel | processingLog | titlePublic | titleVariant | attributionShort | attribution | descriptionShort | descriptionFromProducer | descriptionKey | descriptionProcessing | licenses | license | grapherConfigETL | type | sort | dataChecksum | metadataChecksum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
450415 | Compute_sponsor_large | 2022-07-20 14:19:28 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | {} |
0 | 1 | ||||||||||||||||||||||||||||
450123 | Equivalent_training_time_hours | 2022-07-09 10:01:46 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | {} |
0 | 1 | ||||||||||||||||||||||||||||
450122 | Compute_sponsor_all | 2022-07-09 09:48:24 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | {} |
0 | 1 | ||||||||||||||||||||||||||||
450118 | Cost_training_computation | Cost of training computation was calculated as the <a href="https://ourworldindata.org/grapher/artificial-intelligence-training-computation" target=”_blank”>system's training computation</a> divided by a floating-point operation (FLOP)/$ value. The FLOP/$ value was calculated using one of two methods: 1. The value of FLOP/s per $ at the time of the system's publication (according to the <a href="https://epochai.org/blog/trends-in-gpu-price-performance" target=”_blank”>"Our data" trend line in Figure 1 here</a>). 2. Dividing the theoretical peak throughput (including "Tensor Core" performance) by the reported unit price of the hardware that was actually used for training. The authors expect that Method 2 is more accurate on average. If an estimate via Method 2 is available, they report that estimate; otherwise, they use Method 1. Additionally, the authors made the following assumptions for all systems, in order to convert theoretical peak FLOP/s per $ into realized FLOP/$: 1. Hardware utilization is 35% 2. The amount of GPU time the given hardware is used for in its lifetime is 2 years. | 2022-07-09 09:28:43 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | { "unit": "real 2020 US$", "zeroDay": "2020-01-01", "shortUnit": "$", "yearIsDay": true, "includeInTable": true, "numDecimalPlaces": 0 } |
0 | 1 | |||||||||||||||||||||||||||
450117 | Training_data_gb | 2022-07-09 09:28:43 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | { "includeInTable": true } |
0 | 1 | ||||||||||||||||||||||||||||
450116 | Inference_time_ms | 2022-07-09 09:28:43 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | {} |
0 | 1 | ||||||||||||||||||||||||||||
450114 | Inference_computation_flop | 2022-07-09 09:28:43 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | { "includeInTable": true } |
0 | 1 | ||||||||||||||||||||||||||||
450113 | Training_datapoints | 2022-07-09 09:28:43 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | { "unit": "data points", "zeroDay": "2020-01-01", "yearIsDay": true, "includeInTable": true } |
0 | 1 | ||||||||||||||||||||||||||||
450112 | Parameters | 2022-07-09 09:28:43 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | { "name": "Parameters", "unit": "parameters", "zeroDay": "2020-01-01", "shortUnit": "", "yearIsDay": true, "includeInTable": true } |
0 | 1 | ||||||||||||||||||||||||||||
412581 | Researcher_affiliation | The affiliation of the research team building a particular notable AI system was classified according to the following: — Academia: 100% of researchers affiliated with academia — Collaboration, Academia-majority: 71–99% affiliated with academia — Collaboration: 30–70% affiliated with academia — Collaboration, Industry-majority: 71–99% affiliated with industry — Industry: 100% of researchers affiliated with industry This data corresponds to the "Organization Categorization" column in the primary source data spreadsheet. | 2022-03-20 21:59:37 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | { "includeInTable": true } |
0 | 1 | |||||||||||||||||||||||||||
312259 | Training_computation_petaflop | A petaFLOP is 10¹⁵ floating-point operations. | 2022-02-15 16:45:06 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | { "name": "petaFLOP", "unit": "petaFLOP", "zeroDay": "2020-01-01", "shortUnit": "", "yearIsDay": true, "includeInTable": true } |
0 | 1 | |||||||||||||||||||||||||||
312258 | Training_computation_petaflop_sec_day | A petaflop/s-day (pfs-d) consists of performing 10¹⁵ neural network operations per second for one day, for a total of about 10²⁰ operations. | 2022-02-15 16:25:39 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | { "unit": "petaflop/s-days", "zeroDay": "2020-01-01", "shortUnit": "pfs-d", "yearIsDay": true, "includeInTable": true } |
0 | 1 | |||||||||||||||||||||||||||
312257 | Training_computation_flop | 2022-02-15 13:49:44 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | { "unit": "Floating-point operations", "zeroDay": "2020-01-01", "shortUnit": "FLOP", "yearIsDay": true, "includeInTable": true } |
0 | 1 | ||||||||||||||||||||||||||||
312256 | Domain | 2022-02-15 13:49:44 | 2023-06-15 05:05:42 | AI Input Trends Data – Sevilla et al. (2023) 5515 | Sevilla et al. (2023) 21327 | { "includeInTable": true } |
0 | 1 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE "variables" ( "id" INTEGER PRIMARY KEY AUTOINCREMENT, "name" VARCHAR(750) NULL , "unit" VARCHAR(255) NOT NULL , "description" TEXT NULL , "createdAt" DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP , "updatedAt" DATETIME NULL , "code" VARCHAR(255) NULL , "coverage" VARCHAR(255) NOT NULL , "timespan" VARCHAR(255) NOT NULL , "datasetId" INTEGER NOT NULL , "sourceId" INTEGER NULL , "shortUnit" VARCHAR(255) NULL , "display" TEXT NOT NULL , "columnOrder" INTEGER NOT NULL DEFAULT '0' , "originalMetadata" TEXT NULL , "grapherConfigAdmin" TEXT NULL , "shortName" VARCHAR(255) NULL , "catalogPath" VARCHAR(767) NULL , "dimensions" TEXT NULL , "schemaVersion" INTEGER NOT NULL DEFAULT '1' , "processingLevel" VARCHAR(30) NULL , "processingLog" TEXT NULL , "titlePublic" VARCHAR(512) NULL , "titleVariant" VARCHAR(255) NULL , "attributionShort" VARCHAR(512) NULL , "attribution" TEXT NULL , "descriptionShort" TEXT NULL , "descriptionFromProducer" TEXT NULL , "descriptionKey" TEXT NULL , "descriptionProcessing" TEXT NULL , "licenses" TEXT NULL , "license" TEXT NULL , "grapherConfigETL" TEXT NULL , "type" TEXT NULL , "sort" TEXT NULL , "dataChecksum" VARCHAR(64) NULL , "metadataChecksum" VARCHAR(64) NULL, FOREIGN KEY("datasetId") REFERENCES "datasets" ("id") ON UPDATE RESTRICT ON DELETE RESTRICT, FOREIGN KEY("sourceId") REFERENCES "sources" ("id") ON UPDATE RESTRICT ON DELETE RESTRICT ); CREATE UNIQUE INDEX "idx_catalogPath" ON "variables" ("catalogPath"); CREATE UNIQUE INDEX "unique_short_name_per_dataset" ON "variables" ("shortName", "datasetId"); CREATE UNIQUE INDEX "variables_code_fk_dst_id_7bde8c2a_uniq" ON "variables" ("code", "datasetId"); CREATE INDEX "variables_datasetId_50a98bfd_fk_datasets_id" ON "variables" ("datasetId"); CREATE UNIQUE INDEX "variables_name_fk_dst_id_f7453c33_uniq" ON "variables" ("name", "datasetId"); CREATE INDEX "variables_sourceId_31fce80a_fk_sources_id" ON "variables" ("sourceId");