charts
Data license: CC-BY
13 rows where lastEditedByUserId = 10 sorted by id descending
This data as json, CSV (advanced)
Suggested facets: updatedAt, isIndexable, slug, type, isPublished
Link | rowid | id ▲ | configId | isInheritanceEnabled | createdAt | updatedAt | lastEditedAt | publishedAt | lastEditedByUserId | publishedByUserId | isIndexable | config | slug | type | title | subtitle | note | title_plus_variant | isPublished |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5233 | 5233 | 8554 | 0195a941-a335-79af-aad5-0ef92614618e | False | 2025-03-18 12:36:46 | 2025-03-18 12:37:09 | 2025-03-18 12:37:09 | 10 | False | {"id": 8554, "slug": "community-emissions-data-system", "title": "Sulfur dioxide emissions by sector", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 2, "subtitle": "Sulphur dioxide (SO₂) is an air pollutant formed from the burning of fuels that contain sulphur, such as coal. SO₂ is one of the main chemicals that forms acid rain.", "dimensions": [{"property": "y", "variableId": 1013700}, {"property": "y", "variableId": 1013703}, {"property": "y", "variableId": 1013705}, {"property": "y", "variableId": 1013716}, {"property": "y", "variableId": 1013708}, {"property": "y", "variableId": 1013702}, {"property": "y", "variableId": 1013704}, {"property": "y", "variableId": 1013706}, {"property": "y", "variableId": 1013707}, {"property": "y", "variableId": 1013710}], "isPublished": false, "addCountryMode": "change-country", "selectedEntityNames": ["World"]} |
community-emissions-data-system | LineChart | Sulfur dioxide emissions by sector | Sulphur dioxide (SO₂) is an air pollutant formed from the burning of fuels that contain sulphur, such as coal. SO₂ is one of the main chemicals that forms acid rain. | False | ||||
4921 | 4921 | 8213 | 0192d792-8437-7d2f-bc27-16aa26c91b86 | False | 2024-10-29 09:19:16 | 2024-10-29 09:37:04 | 2024-10-29 09:37:04 | 10 | False | {"id": 8213, "slug": "gini-coefficient-of-before-tax-income-working-age-vs-total-population", "title": "Gini coefficient of before-tax income — Working-age vs total population", "yAxis": {"min": "auto"}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 3, "dimensions": [{"display": {"name": "Total population — Gini coefficient (before tax)", "includeInTable": true}, "property": "y", "variableId": 899102}, {"display": {"name": "Working age population — Gini coefficient (before tax)", "includeInTable": true}, "property": "y", "variableId": 899075}], "isPublished": false, "selectedEntityNames": ["Sweden", "Austria", "Brazil", "Bulgaria", "United States", "Finland"], "selectedFacetStrategy": "entity"} |
gini-coefficient-of-before-tax-income-working-age-vs-total-population | LineChart | Gini coefficient of before-tax income — Working-age vs total population | False | |||||
4920 | 4920 | 8212 | 0192d792-6052-778e-8717-3871f7412677 | False | 2024-10-29 09:19:07 | 2024-10-29 09:19:07 | 10 | False | {"id": 8212, "slug": "gini-coefficient-of-after-tax-income-working-age-vs-total-population", "title": "Gini coefficient of after-tax income — Working-age vs total population", "yAxis": {"min": "auto"}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 1, "dimensions": [{"display": {"name": "Total population — Gini coefficient (after tax)", "includeInTable": true}, "property": "y", "variableId": 899099}, {"display": {"name": "Working age population — Gini coefficient (after tax)", "includeInTable": true}, "property": "y", "variableId": 899073}], "isPublished": false, "selectedEntityNames": ["Sweden", "Austria", "Brazil", "Bulgaria", "United States", "Finland"], "selectedFacetStrategy": "entity"} |
gini-coefficient-of-after-tax-income-working-age-vs-total-population | LineChart | Gini coefficient of after-tax income — Working-age vs total population | False | ||||||
4706 | 4706 | 7887 | 0191b6c7-59ed-7137-a565-460f268a7f70 | False | 2024-06-16 06:42:20 | 2024-09-05 09:00:28 | 2024-06-16 06:49:26 | 10 | False | {"id": 7887, "note": "Data points above the 45-degree line saw rising inequality. For example, the top 1% share in India was 12% around 1993, and 23% around 2018. Data points below the line saw falling inequality. For example, the top 1% share in Ethiopia was 30% around 1993, and 14% around 2018.", "slug": "joe-phd-draft-top1p-wid-data-1993-vs-2018", "title": "Joe PhD Draft: Top 1% share (WID data) 1993 vs 2018", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 2, "chartTypes": ["ScatterPlot"], "dimensions": [{"display": {"name": "Around 2018", "unit": "", "shortUnit": "%", "includeInTable": true}, "property": "y", "variableId": 935522}, {"display": {"name": "Around 1993", "shortUnit": "%", "includeInTable": true}, "property": "x", "variableId": 935524}, {"property": "size", "variableId": 935497}, {"property": "color", "variableId": 935496}], "sourceDesc": "", "isPublished": false, "comparisonLines": [{"yEquals": "x"}], "matchingEntitiesOnly": true, "hideAnnotationFieldsInTitle": {"time": true}} |
joe-phd-draft-top1p-wid-data-1993-vs-2018 | ScatterPlot | Joe PhD Draft: Top 1% share (WID data) 1993 vs 2018 | Data points above the 45-degree line saw rising inequality. For example, the top 1% share in India was 12% around 1993, and 23% around 2018. Data points below the line saw falling inequality. For example, the top 1% share in Ethiopia was 30% around 1993, and 14% around 2018. | False | ||||
4705 | 4705 | 7886 | 0191b6c7-59ec-7d04-9167-e14c070e19a1 | False | 2024-06-16 06:38:21 | 2024-09-05 09:00:28 | 2024-06-16 06:53:40 | 10 | False | {"id": 7886, "note": "Data points above the 45-degree line saw rising inequality. For example, the Gini in Romania was 25 around 1993, and 36 around 2018. Data points below the line saw falling inequality. For example, the Gini in Kenya was 57 around 1993, and 36 around 2018.", "slug": "joe-phd-draft-gini-coefficient-pip-data-1993-vs-2018", "title": "Joe PhD Draft: Gini coefficient (PIP data) 1993 vs 2018", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 2, "chartTypes": ["ScatterPlot"], "dimensions": [{"display": {"name": "Around 2018", "unit": "", "shortUnit": "%", "includeInTable": true}, "property": "y", "variableId": 935521}, {"display": {"name": "Around 1993", "shortUnit": "%", "includeInTable": true}, "property": "x", "variableId": 935520}, {"property": "size", "variableId": 930575}, {"property": "color", "variableId": 930576}], "sourceDesc": "", "isPublished": false, "comparisonLines": [{"yEquals": "x"}], "hideAnnotationFieldsInTitle": {"time": true}} |
joe-phd-draft-gini-coefficient-pip-data-1993-vs-2018 | ScatterPlot | Joe PhD Draft: Gini coefficient (PIP data) 1993 vs 2018 | Data points above the 45-degree line saw rising inequality. For example, the Gini in Romania was 25 around 1993, and 36 around 2018. Data points below the line saw falling inequality. For example, the Gini in Kenya was 57 around 1993, and 36 around 2018. | False | ||||
4704 | 4704 | 7885 | 0191b6c7-59ea-7ad6-a0d4-8d1051813042 | False | 2024-06-15 11:26:05 | 2024-09-05 09:00:28 | 2024-06-15 12:43:57 | 10 | False | {"id": 7885, "note": "India saw a ~200% rise (a trebling) in the top 1% share between (approx.) 1980 and 2018 in the WID data, and a 20% fall in the PIP data. Indonesia saw roughly a 15% rise in the PIP top 1% share, and close to zero rise in the WID Gini.", "slug": "joe-phd-draft-percentage-change-in-top1-1980-2018-wid-vs-pip", "title": "Joe PhD draft: Percentage change in Top 1% share 1980-2018, WID vs PIP", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 12, "chartTypes": ["ScatterPlot"], "dimensions": [{"display": {"name": "WID data", "shortUnit": "%", "includeInTable": true}, "property": "y", "variableId": 935514}, {"display": {"name": "PIP data", "shortUnit": "%", "includeInTable": true}, "property": "x", "variableId": 935515}, {"property": "size", "variableId": 930575}, {"property": "color", "variableId": 930576}], "sourceDesc": "", "isPublished": false, "comparisonLines": [{"yEquals": "x"}]} |
joe-phd-draft-percentage-change-in-top1-1980-2018-wid-vs-pip | ScatterPlot | Joe PhD draft: Percentage change in Top 1% share 1980-2018, WID vs PIP | India saw a ~200% rise (a trebling) in the top 1% share between (approx.) 1980 and 2018 in the WID data, and a 20% fall in the PIP data. Indonesia saw roughly a 15% rise in the PIP top 1% share, and close to zero rise in the WID Gini. | False | ||||
4703 | 4703 | 7884 | 0191b6c7-59e9-7f78-bb69-4f3e6462f9b8 | False | 2024-06-15 11:09:28 | 2024-09-05 09:00:28 | 2024-06-15 11:09:35 | 10 | False | {"id": 7884, "note": "India saw a 44% rise in the Gini coefficient between (approx.) 1980 and 2018 in the WID data, and a 4% rise in the PIP data. Indonesia saw roughly a 15% rise in the PIP Gini, and close to zero rise in the WID Gini.", "slug": "joe-phd-draft-percentage-change-in-gini-1993-2018-wid-vs-pip", "title": "Joe PhD draft: Percentage change in Gini 1980-2018, WID vs PIP", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 7, "chartTypes": ["ScatterPlot"], "dimensions": [{"display": {"name": "WID data", "shortUnit": "%", "includeInTable": true}, "property": "y", "variableId": 935509}, {"display": {"name": "PIP data", "unit": "", "shortUnit": "%", "includeInTable": true}, "property": "x", "variableId": 935508}, {"property": "size", "variableId": 930575}, {"property": "color", "variableId": 930576}], "sourceDesc": "", "isPublished": false, "comparisonLines": [{"yEquals": "x"}]} |
joe-phd-draft-percentage-change-in-gini-1993-2018-wid-vs-pip | ScatterPlot | Joe PhD draft: Percentage change in Gini 1980-2018, WID vs PIP | India saw a 44% rise in the Gini coefficient between (approx.) 1980 and 2018 in the WID data, and a 4% rise in the PIP data. Indonesia saw roughly a 15% rise in the PIP Gini, and close to zero rise in the WID Gini. | False | ||||
4699 | 4699 | 7873 | 0191b6c7-59e3-746e-a896-c2bab60a19b9 | False | 2024-06-14 07:54:15 | 2024-09-05 09:00:28 | 2024-06-14 08:03:39 | 10 | False | {"id": 7873, "note": "Russia saw an 80% rise (i.e. percent, not percentage point) in the Top 1 % share in the WID data, and a 50% fall in the PIP data. Belgium saw a 50% rise in the PIP Top 1% share, and a 10% rise in the WID data.", "slug": "joe-phd-draft-percentage-change-in-top1share-1993-2018-wid-vs-pip", "title": "Joe PhD draft: Percentage change in Top 1% share 1993-2018, WID vs PIP", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 8, "chartTypes": ["ScatterPlot"], "dimensions": [{"display": {"name": "WID", "unit": "%", "shortUnit": "%", "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 935495}, {"display": {"name": "PIP", "unit": "", "shortUnit": "%", "includeInTable": true, "numDecimalPlaces": 1}, "property": "x", "variableId": 935493}, {"property": "size", "variableId": 930575}, {"property": "color", "variableId": 930576}], "sourceDesc": "", "isPublished": false, "comparisonLines": [{"yEquals": "x"}]} |
joe-phd-draft-percentage-change-in-top1share-1993-2018-wid-vs-pip | ScatterPlot | Joe PhD draft: Percentage change in Top 1% share 1993-2018, WID vs PIP | Russia saw an 80% rise (i.e. percent, not percentage point) in the Top 1 % share in the WID data, and a 50% fall in the PIP data. Belgium saw a 50% rise in the PIP Top 1% share, and a 10% rise in the WID data. | False | ||||
4688 | 4688 | 7860 | 0191b6c7-59d1-7b5c-a148-06aaa5a2349b | False | 2024-06-09 16:26:39 | 2024-09-05 09:00:28 | 2024-06-09 20:45:46 | 10 | False | {"id": 7860, "note": "India saw a 30% rise in the Gini coefficient between 1993 and 2018 in the WID data, and a 10% rise in the PIP data. Luxembourg saw roughly 30% rise in the PIP Gini, and close to zero rise in the WID Gini.", "slug": "joe-phd-draft-percentage-change-in-gini-1993-2018-wid-vs-pip", "title": "Joe PhD draft: Percentage change in Gini 1993-2018, WID vs PIP", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 5, "chartTypes": ["ScatterPlot"], "dimensions": [{"display": {"name": "WID data", "unit": "%", "includeInTable": true}, "property": "y", "variableId": 930573}, {"display": {"name": "PIP data", "unit": "%", "includeInTable": true}, "property": "x", "variableId": 930574}, {"property": "size", "variableId": 930575}, {"property": "color", "variableId": 930576}], "sourceDesc": "", "isPublished": false, "comparisonLines": [{"yEquals": "x"}]} |
joe-phd-draft-percentage-change-in-gini-1993-2018-wid-vs-pip | ScatterPlot | Joe PhD draft: Percentage change in Gini 1993-2018, WID vs PIP | India saw a 30% rise in the Gini coefficient between 1993 and 2018 in the WID data, and a 10% rise in the PIP data. Luxembourg saw roughly 30% rise in the PIP Gini, and close to zero rise in the WID Gini. | False | ||||
4687 | 4687 | 7859 | 0191b6c7-59d0-70bf-a1ed-d5f9aee6081c | False | 2024-06-09 16:21:23 | 2024-09-05 09:00:28 | 2024-06-09 16:30:55 | 10 | False | {"id": 7859, "slug": "joe-phd-draft-absolute-change-in-gini-1993-2018-wid-vs-pip", "title": "Joe PhD draft: Absolute change in Gini 1993-2018, WID vs PIP", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 4, "chartTypes": ["ScatterPlot"], "dimensions": [{"display": {"name": "WID data", "includeInTable": true}, "property": "y", "variableId": 930572}, {"display": {"name": "PIP data", "includeInTable": true}, "property": "x", "variableId": 930571}, {"property": "size", "variableId": 930575}, {"property": "color", "variableId": 930576}], "sourceDesc": "", "isPublished": false, "comparisonLines": [{"yEquals": "x"}]} |
joe-phd-draft-absolute-change-in-gini-1993-2018-wid-vs-pip | ScatterPlot | Joe PhD draft: Absolute change in Gini 1993-2018, WID vs PIP | False | |||||
2812 | 2812 | 5042 | 0191b6c7-4b70-7556-853b-ebca2081ea1e | False | 2021-06-22 15:47:41 | 2024-09-05 09:00:28 | 2021-06-26 09:45:36 | 2021-06-26 09:45:36 | 10 | 10 | True | {"id": 5042, "slug": "historical-national-accounts-estimates-of-the-distribution-of-people-living-at-different-income-thresholds-globally", "title": "Historical national accounts estimates of the distribution of people living at different income thresholds globally", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 3, "subtitle": "Average incomes measured in national accounts are often much higher than those observed in survey data. As such the poverty rates shown are lower than corresponding estimates based on survey data – this includes the official estimates produced by the World Bank used to monitor progress against SDG1. See Roser and Hasell (2021) for further discussion.", "originUrl": "https://ourworldindata.org/history-of-poverty-data-appendix", "chartTypes": ["StackedArea"], "dimensions": [{"property": "y", "variableId": 147403}, {"property": "y", "variableId": 147404}, {"property": "y", "variableId": 147405}, {"property": "y", "variableId": 147406}, {"property": "y", "variableId": 147400}], "isPublished": true, "addCountryMode": "change-country", "hideRelativeToggle": false, "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} |
historical-national-accounts-estimates-of-the-distribution-of-people-living-at-different-income-thresholds-globally | StackedArea | Historical national accounts estimates of the distribution of people living at different income thresholds globally | Average incomes measured in national accounts are often much higher than those observed in survey data. As such the poverty rates shown are lower than corresponding estimates based on survey data – this includes the official estimates produced by the World Bank used to monitor progress against SDG1. See Roser and Hasell (2021) for further discussion. | True | ||
2637 | 2637 | 4701 | 0191b6c7-49fb-75f2-a57b-328525e396f9 | False | 2020-12-14 14:00:01 | 2024-09-05 09:00:28 | 2020-12-14 14:03:40 | 2020-12-14 14:03:40 | 10 | 10 | True | {"id": 4701, "slug": "historical-share-of-population-living-on-less-than-per-day2", "title": "Share of population living on less than $2 per day", "yAxis": {"min": "auto"}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 2, "subtitle": "The share of population with a National Accounts-based income lower than $2 per day, measured in 2011 international-$ (see Sources tab for details). The figures are adjusted for inflation and for price differences across countries.", "originUrl": "ourworldindata.org/poverty", "dimensions": [{"display": {"shortUnit": "%"}, "property": "y", "variableId": 145553}], "isPublished": true, "selectedEntityNames": ["Australia", "Italy", "United States", "United Kingdom", "Japan", "World"]} |
historical-share-of-population-living-on-less-than-per-day2 | LineChart | Share of population living on less than $2 per day | The share of population with a National Accounts-based income lower than $2 per day, measured in 2011 international-$ (see Sources tab for details). The figures are adjusted for inflation and for price differences across countries. | True | ||
2636 | 2636 | 4700 | 0191b6c7-49f9-7d71-a123-9442c6c207ac | False | 2020-12-14 13:57:04 | 2024-09-05 09:00:28 | 2020-12-14 14:04:24 | 2020-12-14 13:57:04 | 10 | 10 | True | {"id": 4700, "slug": "historical-share-of-population-living-on-less-than-5-per-day", "title": "Share of population living on less than $5 per day", "yAxis": {"min": "auto"}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.007.json", "version": 3, "subtitle": "The share of population with a National Accounts-based income lower than $5 per day, measured in 2011 international-$ (see Sources tab for details). The figures are adjusted for inflation and for price differences across countries.", "originUrl": "ourworldindata.org/poverty", "dimensions": [{"display": {"shortUnit": "%"}, "property": "y", "variableId": 145555}], "isPublished": true, "selectedEntityNames": ["United States", "United Kingdom", "Italy", "Japan", "Australia", "World"]} |
historical-share-of-population-living-on-less-than-5-per-day | LineChart | Share of population living on less than $5 per day | The share of population with a National Accounts-based income lower than $5 per day, measured in 2011 international-$ (see Sources tab for details). The figures are adjusted for inflation and for price differences across countries. | True |
Advanced export
JSON shape: default, array, newline-delimited
CREATE TABLE charts(id INTEGER, configId VARCHAR, isInheritanceEnabled BOOLEAN, createdAt TIMESTAMP, updatedAt TIMESTAMP, lastEditedAt TIMESTAMP, publishedAt TIMESTAMP, lastEditedByUserId INTEGER, publishedByUserId INTEGER, isIndexable BOOLEAN, config VARCHAR, slug VARCHAR, "type" VARCHAR, title VARCHAR, subtitle VARCHAR, note VARCHAR, title_plus_variant VARCHAR, isPublished BOOLEAN);; CREATE INDEX idx_title_plus_variant ON charts(title_plus_variant);;