charts: 7692
Data license: CC-BY
This data as json
id | slug | type | config | createdAt | updatedAt | lastEditedAt | publishedAt | lastEditedByUserId | publishedByUserId | isIndexable | title | subtitle | note | title_plus_variant | configWithDefaults |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7692 | training-computation-vs-dataset-size-in-notable-ai-systems-by-researcher-affiliation | ScatterPlot | { "id": 7692, "map": { "columnSlug": "736819" }, "slug": "training-computation-vs-dataset-size-in-notable-ai-systems-by-researcher-affiliation", "type": "ScatterPlot", "title": "Training computation vs. dataset size in notable AI systems, by researcher affiliation", "xAxis": { "scaleType": "log", "canChangeScaleType": true }, "yAxis": { "max": 100000000000, "min": 0, "scaleType": "log", "canChangeScaleType": true }, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.004.json", "version": 30, "subtitle": "Computation is measured in total petaFLOP, which is 10\u00b9\u2075 [floating-point operations](#dod:flop) estimated from AI literature, albeit with some uncertainty. Training dataset size refers to the volume of text that is employed to train a model effectively.", "originUrl": "https://ourworldindata.org/artificial-intelligence", "colorScale": { "customCategoryColors": { "No data": "#58ac8c", "Academia": "#1171b0", "Industry": "#ca011f", "Government": "#18470f", "Collaboration": "#7f7480", "Research collective": "#bc8e5a", "Collaboration, majority academia": "#8f94e3", "Collaboration, majority industry": "#e66ca1" }, "customNumericColorsActive": true }, "dimensions": [ { "property": "y", "variableId": 953916 }, { "property": "x", "variableId": 953910 }, { "property": "color", "variableId": 953912 } ], "entityType": "system", "isPublished": true, "entityTypePlural": "systems", "hideAnnotationFieldsInTitle": { "time": true } } |
2024-03-14 13:53:33 | 2024-07-17 16:46:50 | 2024-07-17 16:46:50 | 2024-03-14 17:33:54 | 74 | 72 | 1 | Training computation vs. dataset size in notable AI systems, by researcher affiliation | Computation is measured in total petaFLOP, which is 10¹⁵ [floating-point operations](#dod:flop) estimated from AI literature, albeit with some uncertainty. Training dataset size refers to the volume of text that is employed to train a model effectively. | Training computation vs. dataset size in notable AI systems, by researcher affiliation () | { "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.004.json", "map": { "projection": "World", "hideTimeline": false, "colorScale": { "baseColorScheme": "default", "equalSizeBins": true, "binningStrategy": "ckmeans", "customNumericColorsActive": false, "colorSchemeInvert": false, "binningStrategyBinCount": 5 }, "timeTolerance": 0, "toleranceStrategy": "closest", "tooltipUseCustomLabels": false, "time": "latest" }, "maxTime": "latest", "baseColorScheme": "default", "yAxis": { "removePointsOutsideDomain": false, "scaleType": "linear", "canChangeScaleType": false, "facetDomain": "shared" }, "tab": "chart", "matchingEntitiesOnly": false, "hasChartTab": true, "hideLegend": false, "hideLogo": false, "hideTimeline": false, "colorScale": { "baseColorScheme": "default", "equalSizeBins": true, "binningStrategy": "ckmeans", "customNumericColorsActive": false, "colorSchemeInvert": false, "binningStrategyBinCount": 5 }, "scatterPointLabelStrategy": "year", "selectedFacetStrategy": "none", "isPublished": true, "invertColorScheme": false, "version": 30, "logo": "owid", "entityType": "system", "facettingLabelByYVariables": "metric", "addCountryMode": "add-country", "compareEndPointsOnly": false, "type": "ScatterPlot", "hasMapTab": false, "stackMode": "absolute", "minTime": "earliest", "hideAnnotationFieldsInTitle": { "entity": false, "time": false, "changeInPrefix": false }, "xAxis": { "removePointsOutsideDomain": false, "scaleType": "linear", "canChangeScaleType": false, "facetDomain": "shared" }, "hideConnectedScatterLines": false, "showNoDataArea": true, "zoomToSelection": false, "showYearLabels": false, "hideLinesOutsideTolerance": false, "hideTotalValueLabel": false, "hideScatterLabels": false, "sortBy": "total", "sortOrder": "desc", "hideFacetControl": true, "entityTypePlural": "systems", "missingDataStrategy": "auto", "id": 7692, "slug": "training-computation-vs-dataset-size-in-notable-ai-systems-by-researcher-affiliation", "title": "Training computation vs. dataset size in notable AI systems, by researcher affiliation", "subtitle": "Computation is measured in total petaFLOP, which is 10\u00b9\u2075 [floating-point operations](#dod:flop) estimated from AI literature, albeit with some uncertainty. Training dataset size refers to the volume of text that is employed to train a model effectively.", "originUrl": "https://ourworldindata.org/artificial-intelligence", "dimensions": [ { "property": "y", "variableId": 953916 }, { "property": "x", "variableId": 953910 }, { "property": "color", "variableId": 953912 } ] } |