charts: 6945
Data license: CC-BY
This data as json
id | slug | type | config | createdAt | updatedAt | lastEditedAt | publishedAt | lastEditedByUserId | publishedByUserId | isIndexable | title | subtitle | note | title_plus_variant | configWithDefaults |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6945 | ai-training-computation-vs-parameters-by-domain | ScatterPlot | { "id": 6945, "map": { "columnSlug": "736819" }, "note": "Parameters are estimated based on published results in the AI literature and come with some uncertainty. The authors expect the estimates to be correct within a factor of 10.", "slug": "ai-training-computation-vs-parameters-by-domain", "type": "ScatterPlot", "title": "Training computation vs. parameters in notable AI systems, by domain", "xAxis": { "scaleType": "log", "canChangeScaleType": true }, "yAxis": { "max": 100000000000, "min": 0, "scaleType": "log", "canChangeScaleType": true }, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.004.json", "version": 19, "subtitle": "Computation is measured in total petaFLOP, which is 10\u00b9\u2075 [floating-point operations](#dod:flop) estimated from AI literature, albeit with some uncertainty. Parameters are variables in an AI system whose values are adjusted during training to establish how input data gets transformed into the desired output.", "originUrl": "https://ourworldindata.org/artificial-intelligence", "dimensions": [ { "property": "y", "variableId": 953916 }, { "property": "x", "variableId": 953911 }, { "property": "size", "variableId": 953910 }, { "property": "color", "variableId": 953913 } ], "entityType": "system", "isPublished": true, "entityTypePlural": "systems", "hideAnnotationFieldsInTitle": { "time": true } } |
2023-07-08 12:24:07 | 2024-07-17 16:46:48 | 2024-07-17 16:46:48 | 2023-09-01 13:35:07 | 74 | 46 | 1 | Training computation vs. parameters in notable AI systems, by domain | Computation is measured in total petaFLOP, which is 10¹⁵ [floating-point operations](#dod:flop) estimated from AI literature, albeit with some uncertainty. Parameters are variables in an AI system whose values are adjusted during training to establish how input data gets transformed into the desired output. | Parameters are estimated based on published results in the AI literature and come with some uncertainty. The authors expect the estimates to be correct within a factor of 10. | Training computation vs. parameters in notable AI systems, by domain () | { "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.004.json", "map": { "projection": "World", "hideTimeline": false, "colorScale": { "baseColorScheme": "default", "equalSizeBins": true, "binningStrategy": "ckmeans", "customNumericColorsActive": false, "colorSchemeInvert": false, "binningStrategyBinCount": 5 }, "timeTolerance": 0, "toleranceStrategy": "closest", "tooltipUseCustomLabels": false, "time": "latest" }, "maxTime": "latest", "baseColorScheme": "default", "yAxis": { "removePointsOutsideDomain": false, "scaleType": "linear", "canChangeScaleType": false, "facetDomain": "shared" }, "tab": "chart", "matchingEntitiesOnly": false, "hasChartTab": true, "hideLegend": false, "hideLogo": false, "hideTimeline": false, "colorScale": { "baseColorScheme": "default", "equalSizeBins": true, "binningStrategy": "ckmeans", "customNumericColorsActive": false, "colorSchemeInvert": false, "binningStrategyBinCount": 5 }, "scatterPointLabelStrategy": "year", "selectedFacetStrategy": "none", "isPublished": true, "invertColorScheme": false, "version": 19, "logo": "owid", "entityType": "system", "facettingLabelByYVariables": "metric", "addCountryMode": "add-country", "compareEndPointsOnly": false, "type": "ScatterPlot", "hasMapTab": false, "stackMode": "absolute", "minTime": "earliest", "hideAnnotationFieldsInTitle": { "entity": false, "time": false, "changeInPrefix": false }, "xAxis": { "removePointsOutsideDomain": false, "scaleType": "linear", "canChangeScaleType": false, "facetDomain": "shared" }, "hideConnectedScatterLines": false, "showNoDataArea": true, "zoomToSelection": false, "showYearLabels": false, "hideLinesOutsideTolerance": false, "hideTotalValueLabel": false, "hideScatterLabels": false, "sortBy": "total", "sortOrder": "desc", "hideFacetControl": true, "entityTypePlural": "systems", "missingDataStrategy": "auto", "id": 6945, "note": "Parameters are estimated based on published results in the AI literature and come with some uncertainty. The authors expect the estimates to be correct within a factor of 10.", "slug": "ai-training-computation-vs-parameters-by-domain", "title": "Training computation vs. parameters in notable AI systems, by domain", "subtitle": "Computation is measured in total petaFLOP, which is 10\u00b9\u2075 [floating-point operations](#dod:flop) estimated from AI literature, albeit with some uncertainty. Parameters are variables in an AI system whose values are adjusted during training to establish how input data gets transformed into the desired output.", "originUrl": "https://ourworldindata.org/artificial-intelligence", "dimensions": [ { "property": "y", "variableId": 953916 }, { "property": "x", "variableId": 953911 }, { "property": "size", "variableId": 953910 }, { "property": "color", "variableId": 953913 } ] } |