chart_configs
Data license: CC-BY
131,864 rows
This data as json, CSV (advanced)
chartType 8 ✖
- LineChart 129,492
- ScatterPlot 718
- StackedArea 469
- DiscreteBar 426
- StackedBar 213
- StackedDiscreteBar 151
- Marimekko 56
- SlopeChart 41
Link | rowid ▼ | id | patch | full | slug | chartType | createdAt | updatedAt | fullMd5 |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0191b6c7-3629-74fd-9ebc-abcf9a99c1d2 | {"id": 20, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "Average height of men", "customNumericLabels": ["", "", "", "", "", "", "", "", "", "", "", "", ""], "customNumericValues": [150, 155, 160, 165, 170, 175, 180, 185]}, "timeTolerance": 10}, "slug": "average-height-of-men-for-selected-countries", "title": "Average height of men by year of birth", "yAxis": {"min": 160}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 13, "subtitle": "", "hasMapTab": true, "originUrl": "https://ourworldindata.org/human-height/", "colorScale": {"baseColorScheme": "OwidDistinctLines"}, "dimensions": [{"display": {"name": "", "unit": "", "tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1004914}], "isPublished": true, "variantName": "University of Tuebingen", "selectedEntityNames": ["United States", "Brazil", "Germany", "Nigeria", "India", "Australia"]} | {"id": 20, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "Average height of men", "customNumericLabels": ["", "", "", "", "", "", "", "", "", "", "", "", ""], "customNumericValues": [150, 155, 160, 165, 170, 175, 180, 185]}, "timeTolerance": 10}, "slug": "average-height-of-men-for-selected-countries", "title": "Average height of men by year of birth", "yAxis": {"min": 160}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 13, "subtitle": "", "hasMapTab": true, "originUrl": "https://ourworldindata.org/human-height/", "colorScale": {"baseColorScheme": "OwidDistinctLines"}, "dimensions": [{"display": {"name": "", "unit": "", "tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1004914}], "isPublished": true, "variantName": "University of Tuebingen", "selectedEntityNames": ["United States", "Brazil", "Germany", "Nigeria", "India", "Australia"]} | average-height-of-men-for-selected-countries | LineChart | 2015-07-02 07:05:32 | 2024-12-31 18:48:54 | xaMOSZge1Pg0hAKqz1xlSA== |
1 | 1 | 0191b6c7-3630-7096-87ab-3ca7bb39292b | {"id": 26, "map": {"colorScale": {"baseColorScheme": "Greens", "binningStrategy": "manual", "legendDescription": "Ratio of exports and imports to GDP (in %)", "customNumericValues": [0, 20, 40, 60, 80, 100, 120]}, "columnSlug": "539765", "timeTolerance": 1}, "tab": "map", "slug": "trade-openness", "title": "Trade openness", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 15, "subtitle": "Trade openness is measured as the sum of a country's exports and imports as a share of that country's GDP (in %).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/trade-and-globalization", "dimensions": [{"property": "y", "variableId": 539765}], "isPublished": false, "selectedEntityNames": ["Mali", "Qatar", "Fiji"]} | {"id": 26, "map": {"colorScale": {"baseColorScheme": "Greens", "binningStrategy": "manual", "legendDescription": "Ratio of exports and imports to GDP (in %)", "customNumericValues": [0, 20, 40, 60, 80, 100, 120]}, "columnSlug": "539765", "timeTolerance": 1}, "tab": "map", "slug": "trade-openness", "title": "Trade openness", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 15, "subtitle": "Trade openness is measured as the sum of a country's exports and imports as a share of that country's GDP (in %).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/trade-and-globalization", "dimensions": [{"property": "y", "variableId": 539765}], "isPublished": false, "selectedEntityNames": ["Mali", "Qatar", "Fiji"]} | trade-openness | LineChart | 2015-07-07 18:57:10 | 2024-09-05 09:00:28 | wsApA0MupSEX3v77uVmm7Q== |
2 | 2 | 0191b6c7-3633-7685-a88f-7d62ad391cb7 | {"id": 27, "map": {"region": "Europe", "colorScale": {"baseColorScheme": "PuBu", "binningStrategy": "manual", "legendDescription": "Sum of exports and imports as a % of GDP", "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 300]}, "columnSlug": "35", "timeTolerance": 1}, "slug": "trade-openness-in-europe", "title": "Trade openness in Europe", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 6, "subtitle": "Shown is the sum of exports and imports as a share of GDP.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/trade-and-globalization", "dimensions": [{"display": {"name": "Historical European trade", "shortUnit": "%", "tolerance": 5, "isProjection": false, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 35}], "isPublished": true, "selectedEntityNames": ["Sweden", "Spain", "Italy", "Germany", "France", "United Kingdom"]} | {"id": 27, "map": {"region": "Europe", "colorScale": {"baseColorScheme": "PuBu", "binningStrategy": "manual", "legendDescription": "Sum of exports and imports as a % of GDP", "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 300]}, "columnSlug": "35", "timeTolerance": 1}, "slug": "trade-openness-in-europe", "title": "Trade openness in Europe", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 6, "subtitle": "Shown is the sum of exports and imports as a share of GDP.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/trade-and-globalization", "dimensions": [{"display": {"name": "Historical European trade", "shortUnit": "%", "tolerance": 5, "isProjection": false, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 35}], "isPublished": true, "selectedEntityNames": ["Sweden", "Spain", "Italy", "Germany", "France", "United Kingdom"]} | trade-openness-in-europe | LineChart | 2015-07-07 19:07:38 | 2024-09-05 09:00:28 | YPfuhdgq5nlqY2ym0NX/eg== |
3 | 3 | 0191b6c7-3635-7342-85ea-fd6b6c760ba5 | {"id": 31, "map": {"time": 2025, "colorScale": {"baseColorScheme": "YlOrBr", "binningStrategy": "manual", "legendDescription": "Share of the population with no education", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c", null], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70]}, "timeTolerance": 1}, "tab": "map", "note": "Projections are based on Medium (SSP2) scenario.", "slug": "projections-of-the-rate-of-no-education-based-on-current-global-education-trends-1970-2050", "title": "Share of the population with no formal education", "yAxis": {"max": 1, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 24, "subtitle": "Formal education is [primary](#dod:primary-education) or higher.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/global-education", "dimensions": [{"display": {"name": "IIASA rates of no education projections", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 1003939}], "isPublished": true, "variantName": "IIASA", "selectedEntityNames": ["Chad", "China", "India", "Laos", "Nepal", "Nigeria", "Vietnam", "South Africa", "Egypt", "Brazil", "Argentina", "United States", "Germany", "United Kingdom"]} | {"id": 31, "map": {"time": 2025, "colorScale": {"baseColorScheme": "YlOrBr", "binningStrategy": "manual", "legendDescription": "Share of the population with no education", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c", null], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70]}, "timeTolerance": 1}, "tab": "map", "note": "Projections are based on Medium (SSP2) scenario.", "slug": "projections-of-the-rate-of-no-education-based-on-current-global-education-trends-1970-2050", "title": "Share of the population with no formal education", "yAxis": {"max": 1, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 24, "subtitle": "Formal education is [primary](#dod:primary-education) or higher.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/global-education", "dimensions": [{"display": {"name": "IIASA rates of no education projections", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 1003939}], "isPublished": true, "variantName": "IIASA", "selectedEntityNames": ["Chad", "China", "India", "Laos", "Nepal", "Nigeria", "Vietnam", "South Africa", "Egypt", "Brazil", "Argentina", "United States", "Germany", "United Kingdom"]} | projections-of-the-rate-of-no-education-based-on-current-global-education-trends-1970-2050 | LineChart | 2015-07-09 21:41:31 | 2025-02-10 15:54:54 | MmHXmNzRJ8XvwQhqzetxcQ== |
4 | 4 | 0191b6c7-3638-7d0f-b578-d0ade7504602 | {"id": 44, "map": {"time": 1950, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0]}, "timeTolerance": 10}, "note": "To allow for comparisons between countries and over time, this metric is [age-standardized](#dod:age_standardized). All deaths in a country may not have been registered with a [cause of death](#dod:underlying-cause-of-death).", "slug": "lung-cancer-deaths-per-100000-by-sex-1950-2002", "title": "Lung cancer death rates", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 1950, "version": 16, "subtitle": "Reported annual death rate from lung, bronchus or trachea [cancers](#dod:cancer) per 100,000 people, based on the [underlying cause](#dod:underlying-cause-of-death) listed on death certificates.", "originUrl": "https://ourworldindata.org/smoking", "dimensions": [{"display": {"name": "Women", "includeInTable": true}, "property": "y", "variableId": 965245}, {"display": {"name": "Men", "unit": "deaths per 100,000 people", "includeInTable": true}, "property": "y", "variableId": 966633}], "isPublished": true, "addCountryMode": "change-country", "baseColorScheme": "owid-distinct", "invertColorScheme": true, "selectedEntityNames": ["United States"], "selectedEntityColors": {"United States": "#b13507"}, "hideAnnotationFieldsInTitle": {"time": true}} | {"id": 44, "map": {"time": 1950, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0]}, "timeTolerance": 10}, "note": "To allow for comparisons between countries and over time, this metric is [age-standardized](#dod:age_standardized). All deaths in a country may not have been registered with a [cause of death](#dod:underlying-cause-of-death).", "slug": "lung-cancer-deaths-per-100000-by-sex-1950-2002", "title": "Lung cancer death rates", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 1950, "version": 16, "subtitle": "Reported annual death rate from lung, bronchus or trachea [cancers](#dod:cancer) per 100,000 people, based on the [underlying cause](#dod:underlying-cause-of-death) listed on death certificates.", "originUrl": "https://ourworldindata.org/smoking", "dimensions": [{"display": {"name": "Women", "includeInTable": true}, "property": "y", "variableId": 965245}, {"display": {"name": "Men", "unit": "deaths per 100,000 people", "includeInTable": true}, "property": "y", "variableId": 966633}], "isPublished": true, "addCountryMode": "change-country", "baseColorScheme": "owid-distinct", "invertColorScheme": true, "selectedEntityNames": ["United States"], "selectedEntityColors": {"United States": "#b13507"}, "hideAnnotationFieldsInTitle": {"time": true}} | lung-cancer-deaths-per-100000-by-sex-1950-2002 | LineChart | 2015-07-18 22:13:24 | 2024-09-13 11:12:13 | vk05yzc/hflshBR7TwWDMw== |
5 | 5 | 0191b6c7-363d-7a4b-8cb6-fb25da1327a1 | {"id": 46, "map": {"colorScale": {"baseColorScheme": "PuBu", "binningStrategy": "manual", "legendDescription": "Subscriptions per 100 people", "customNumericColors": ["#000", null, null, null], "customNumericValues": [0, 1000000, 3000000, 10000000, 30000000, 100000000, 300000000, 1000000000, 3000000000]}, "timeTolerance": 5}, "tab": "map", "slug": "mobile-cellular-subscriptions-by-country", "title": "Mobile phone subscriptions", "yAxis": {"max": 200, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 26, "hasMapTab": true, "originUrl": "https://ourworldindata.org/technological-change", "dimensions": [{"display": {"unit": "subscriptions", "tolerance": 5, "numDecimalPlaces": 0}, "property": "y", "variableId": 1008187}], "isPublished": true, "timelineMinTime": 1980, "relatedQuestions": [{"url": "https://ourworldindata.org/grapher/mobile-cellular-subscriptions-per-100-people?country=~OWID_WRL", "text": "Per 100 people"}], "selectedEntityNames": ["United States", "China", "India", "United Kingdom", "Japan"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 46, "map": {"colorScale": {"baseColorScheme": "PuBu", "binningStrategy": "manual", "legendDescription": "Subscriptions per 100 people", "customNumericColors": ["#000", null, null, null], "customNumericValues": [0, 1000000, 3000000, 10000000, 30000000, 100000000, 300000000, 1000000000, 3000000000]}, "timeTolerance": 5}, "tab": "map", "slug": "mobile-cellular-subscriptions-by-country", "title": "Mobile phone subscriptions", "yAxis": {"max": 200, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 26, "hasMapTab": true, "originUrl": "https://ourworldindata.org/technological-change", "dimensions": [{"display": {"unit": "subscriptions", "tolerance": 5, "numDecimalPlaces": 0}, "property": "y", "variableId": 1008187}], "isPublished": true, "timelineMinTime": 1980, "relatedQuestions": [{"url": "https://ourworldindata.org/grapher/mobile-cellular-subscriptions-per-100-people?country=~OWID_WRL", "text": "Per 100 people"}], "selectedEntityNames": ["United States", "China", "India", "United Kingdom", "Japan"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | mobile-cellular-subscriptions-by-country | LineChart | 2015-07-20 16:36:56 | 2025-01-29 08:48:17 | HEbbM1+enpvOUWQdIfkfqQ== |
6 | 6 | 0191b6c7-3645-760a-949f-3267a1f0069f | {"id": 51, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "correlation-between-child-mortality-and-mean-years-of-schooling-for-those-aged-15-and-older", "title": "Child mortality vs. average years of schooling for women", "xAxis": {"max": 15, "min": 0}, "yAxis": {"max": 50, "min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 40, "subtitle": "The child mortality rate is the share of children who die before reaching the age of five.", "originUrl": "https://ourworldindata.org/child-mortality/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Child mortality", "unit": "deaths per 100 live births"}, "property": "y", "variableId": 1027772}, {"display": {"name": "Average years of education for 15-64 years female youth and adults"}, "property": "x", "variableId": 809140}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "timelineMinTime": 1950, "hideRelativeToggle": false, "excludedEntityNames": ["World", "Lower-middle-income countries", "Low-income countries", "High-income countries", "Upper-middle-income countries"], "compareEndPointsOnly": true} | {"id": 51, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "correlation-between-child-mortality-and-mean-years-of-schooling-for-those-aged-15-and-older", "title": "Child mortality vs. average years of schooling for women", "xAxis": {"max": 15, "min": 0}, "yAxis": {"max": 50, "min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 40, "subtitle": "The child mortality rate is the share of children who die before reaching the age of five.", "originUrl": "https://ourworldindata.org/child-mortality/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Child mortality", "unit": "deaths per 100 live births"}, "property": "y", "variableId": 1027772}, {"display": {"name": "Average years of education for 15-64 years female youth and adults"}, "property": "x", "variableId": 809140}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "timelineMinTime": 1950, "hideRelativeToggle": false, "excludedEntityNames": ["World", "Lower-middle-income countries", "Low-income countries", "High-income countries", "Upper-middle-income countries"], "compareEndPointsOnly": true} | correlation-between-child-mortality-and-mean-years-of-schooling-for-those-aged-15-and-older | ScatterPlot | 2015-07-21 21:01:27 | 2025-04-28 14:25:44 | e4F8EFD56SZSEQqutxgDlA== |
7 | 7 | 0191b6c7-3647-7755-94db-3281edad9f2c | {"id": 52, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "65", "timeTolerance": 1}, "slug": "wage-of-craftsmen-relative-to-that-of-laborers-in-england-1200-2000", "title": "Wage of craftsmen relative to that of laborers in England", "xAxis": {"min": 1200}, "yAxis": {"max": 2.2, "min": 1}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 9, "originUrl": "https://ourworldindata.org/economic-inequality", "dimensions": [{"display": {"name": "", "unit": "", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 65}], "hideLegend": true, "isPublished": true, "selectedEntityNames": ["Relative wages"], "hideAnnotationFieldsInTitle": {"entity": true}} | {"id": 52, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "65", "timeTolerance": 1}, "slug": "wage-of-craftsmen-relative-to-that-of-laborers-in-england-1200-2000", "title": "Wage of craftsmen relative to that of laborers in England", "xAxis": {"min": 1200}, "yAxis": {"max": 2.2, "min": 1}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 9, "originUrl": "https://ourworldindata.org/economic-inequality", "dimensions": [{"display": {"name": "", "unit": "", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 65}], "hideLegend": true, "isPublished": true, "selectedEntityNames": ["Relative wages"], "hideAnnotationFieldsInTitle": {"entity": true}} | wage-of-craftsmen-relative-to-that-of-laborers-in-england-1200-2000 | LineChart | 2015-07-22 16:06:57 | 2024-09-05 09:00:28 | hItogekzvrsyHPhFVetT5w== |
8 | 8 | 0191b6c7-364a-786d-93a6-4520998856a1 | {"id": 53, "map": {"time": 2009, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "columnSlug": "66", "timeTolerance": 10}, "slug": "labor-cost-ratio-and-attainment-levels-2009-or-latest-available-year", "title": "Labor cost ratio and attainment levels", "yAxis": {"max": 4, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 21, "subtitle": "Labor cost ratio of tertiary-educated individuals (5/6) to below upper secondary-educated individuals (0/1/2) and attainment levels of 45-54 year-olds", "originUrl": "ourworldindata.org/global-education", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Labor cost ratio ISCED 5/6 to ISCED 0/1/2 (45-54 year-olds)", "unit": "", "tolerance": 5}, "property": "y", "targetYear": 2009, "variableId": 66}, {"display": {"name": "Proportion of 45-54 year-olds with tertiary education (ISCED 5/6)", "unit": "", "tolerance": 5}, "property": "x", "targetYear": 2009, "variableId": 67}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideTimeline": true, "hideRelativeToggle": false, "selectedEntityNames": []} | {"id": 53, "map": {"time": 2009, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "columnSlug": "66", "timeTolerance": 10}, "slug": "labor-cost-ratio-and-attainment-levels-2009-or-latest-available-year", "title": "Labor cost ratio and attainment levels", "yAxis": {"max": 4, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 21, "subtitle": "Labor cost ratio of tertiary-educated individuals (5/6) to below upper secondary-educated individuals (0/1/2) and attainment levels of 45-54 year-olds", "originUrl": "ourworldindata.org/global-education", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Labor cost ratio ISCED 5/6 to ISCED 0/1/2 (45-54 year-olds)", "unit": "", "tolerance": 5}, "property": "y", "targetYear": 2009, "variableId": 66}, {"display": {"name": "Proportion of 45-54 year-olds with tertiary education (ISCED 5/6)", "unit": "", "tolerance": 5}, "property": "x", "targetYear": 2009, "variableId": 67}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideTimeline": true, "hideRelativeToggle": false, "selectedEntityNames": []} | labor-cost-ratio-and-attainment-levels-2009-or-latest-available-year | ScatterPlot | 2015-07-22 16:52:48 | 2024-11-15 17:17:33 | 1WeTnVfSRcC6/Lampmq3tQ== |
9 | 9 | 0191b6c7-364c-7035-901e-10b77c42752c | {"id": 56, "map": {"time": 1970, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "timeTolerance": 10}, "note": "Formal education is [primary](#dod:primary-education) or higher.", "slug": "total-number-of-people-aged-15-with-no-education-in-millions-by-continent-1970-2050", "title": "Number of adults with no formal education by region", "yAxis": {"max": 800, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 11, "subtitle": "Shown are historical estimates and median future projections of education.", "originUrl": "https://ourworldindata.org/global-education", "chartTypes": ["StackedArea"], "dimensions": [{"property": "y", "variableId": 1004220}], "entityType": "region", "isPublished": true, "entityTypePlural": "regions", "hideRelativeToggle": false, "selectedEntityNames": ["South America (UNSD)", "Northern Africa (UNSD)", "Oceania (UNSD)", "Europe (UNSD)", "Asia (UNSD)", "Africa (UNSD)"], "selectedEntityColors": {"Asia": "#00847e", "Africa": "#a2559c", "Europe": "#4c6a9c", "Oceania": "#9a5129", "Asia (UNSD)": "#00847e", "Africa (UNSD)": "#a2559c", "Europe (UNSD)": "#4c6a9c", "North America": "#e56e5a", "South America": "#883039", "Oceania (UNSD)": "#38aaba", "South America (UNSD)": "#9a5129", "Northern Africa (UNSD)": "#e56e5a"}, "hideAnnotationFieldsInTitle": {"time": true}} | {"id": 56, "map": {"time": 1970, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "timeTolerance": 10}, "note": "Formal education is [primary](#dod:primary-education) or higher.", "slug": "total-number-of-people-aged-15-with-no-education-in-millions-by-continent-1970-2050", "title": "Number of adults with no formal education by region", "yAxis": {"max": 800, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 11, "subtitle": "Shown are historical estimates and median future projections of education.", "originUrl": "https://ourworldindata.org/global-education", "chartTypes": ["StackedArea"], "dimensions": [{"property": "y", "variableId": 1004220}], "entityType": "region", "isPublished": true, "entityTypePlural": "regions", "hideRelativeToggle": false, "selectedEntityNames": ["South America (UNSD)", "Northern Africa (UNSD)", "Oceania (UNSD)", "Europe (UNSD)", "Asia (UNSD)", "Africa (UNSD)"], "selectedEntityColors": {"Asia": "#00847e", "Africa": "#a2559c", "Europe": "#4c6a9c", "Oceania": "#9a5129", "Asia (UNSD)": "#00847e", "Africa (UNSD)": "#a2559c", "Europe (UNSD)": "#4c6a9c", "North America": "#e56e5a", "South America": "#883039", "Oceania (UNSD)": "#38aaba", "South America (UNSD)": "#9a5129", "Northern Africa (UNSD)": "#e56e5a"}, "hideAnnotationFieldsInTitle": {"time": true}} | total-number-of-people-aged-15-with-no-education-in-millions-by-continent-1970-2050 | StackedArea | 2015-07-24 18:43:37 | 2024-12-11 22:00:29 | vXLTCCQmwcdTMJQ9jj1fbg== |
10 | 10 | 0191b6c7-364e-7cf2-be6e-8cee8e073203 | {"id": 64, "map": {"colorScale": {"baseColorScheme": "YlGnBu", "binningStrategy": "manual", "legendDescription": "Life expectancy (at birth)", "customNumericColors": ["#fee08b", null, "#ffffbf", "#e6f598", "#abdda4", "#66c2a5", "#3288bd"], "customNumericValues": [50, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, -1], "customCategoryColors": {"No data": "#8b8b8b"}, "binningStrategyBinCount": 10}, "columnSlug": "539022", "timeTolerance": 10}, "slug": "life-expectancy", "title": "Life expectancy", "yAxis": {"min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 59, "subtitle": "The [period life expectancy](#dod:period-life-expectancy) at birth, in a given year.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/life-expectancy", "dimensions": [{"display": {"unit": "years", "shortUnit": "years", "numDecimalPlaces": 1}, "property": "y", "variableId": 1002268}], "isPublished": true, "variantName": "over the long-run", "selectedEntityNames": ["World", "Americas", "Europe", "Africa", "Asia", "Oceania"], "selectedEntityColors": {"Asia": "#00847e", "World": "#18470f", "Africa": "#a2559c", "Europe": "#4c6a9c", "Oceania": "#9a5129", "Americas": "#c4523e"}, "hideAnnotationFieldsInTitle": {"time": true}} | {"id": 64, "map": {"colorScale": {"baseColorScheme": "YlGnBu", "binningStrategy": "manual", "legendDescription": "Life expectancy (at birth)", "customNumericColors": ["#fee08b", null, "#ffffbf", "#e6f598", "#abdda4", "#66c2a5", "#3288bd"], "customNumericValues": [50, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, -1], "customCategoryColors": {"No data": "#8b8b8b"}, "binningStrategyBinCount": 10}, "columnSlug": "539022", "timeTolerance": 10}, "slug": "life-expectancy", "title": "Life expectancy", "yAxis": {"min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 59, "subtitle": "The [period life expectancy](#dod:period-life-expectancy) at birth, in a given year.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/life-expectancy", "dimensions": [{"display": {"unit": "years", "shortUnit": "years", "numDecimalPlaces": 1}, "property": "y", "variableId": 1002268}], "isPublished": true, "variantName": "over the long-run", "selectedEntityNames": ["World", "Americas", "Europe", "Africa", "Asia", "Oceania"], "selectedEntityColors": {"Asia": "#00847e", "World": "#18470f", "Africa": "#a2559c", "Europe": "#4c6a9c", "Oceania": "#9a5129", "Americas": "#c4523e"}, "hideAnnotationFieldsInTitle": {"time": true}} | life-expectancy | LineChart | 2015-07-31 04:53:22 | 2024-12-03 16:38:14 | YuY9unF6wQZJ6JwTWIiXIA== |
11 | 11 | 0191b6c7-3650-7e22-8785-c8be28d6edcf | {"id": 66, "map": {"colorScale": {"baseColorScheme": "YlOrRd", "binningStrategy": "manual", "legendDescription": "Maternal mortality rate (per 100,000 births)", "customNumericColors": ["#000", null, "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0, 10, 25, 50, 100, 250, 500, 1000, 2500]}, "columnSlug": "735958", "timeTolerance": 1}, "tab": "map", "note": "Deaths prior to 1985 are reported figures by the nations and might be undercounted. Sudden jumps in mortality rate in 1985 are a consequence of combining data sources and do not necessarily reflect a real increase in mortality.", "slug": "maternal-mortality-rate-per-100000-live-births-around-the-world", "title": "Maternal mortality ratio", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 23, "subtitle": "The maternal mortality ratio is the estimated number of women who die from [maternal conditions](#dod:maternal-mortality) per 100,000 live births.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/maternal-mortality/", "dimensions": [{"display": {"name": "Maternal mortality ratio", "unit": "deaths per 100,000 live births", "shortUnit": "", "includeInTable": true}, "property": "y", "variableId": 959831}], "isPublished": false, "variantName": "World Bank", "selectedEntityNames": ["Sub-Saharan Africa", "South Asia", "World", "Kenya", "Bangladesh", "Brazil"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 66, "map": {"colorScale": {"baseColorScheme": "YlOrRd", "binningStrategy": "manual", "legendDescription": "Maternal mortality rate (per 100,000 births)", "customNumericColors": ["#000", null, "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0, 10, 25, 50, 100, 250, 500, 1000, 2500]}, "columnSlug": "735958", "timeTolerance": 1}, "tab": "map", "note": "Deaths prior to 1985 are reported figures by the nations and might be undercounted. Sudden jumps in mortality rate in 1985 are a consequence of combining data sources and do not necessarily reflect a real increase in mortality.", "slug": "maternal-mortality-rate-per-100000-live-births-around-the-world", "title": "Maternal mortality ratio", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 23, "subtitle": "The maternal mortality ratio is the estimated number of women who die from [maternal conditions](#dod:maternal-mortality) per 100,000 live births.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/maternal-mortality/", "dimensions": [{"display": {"name": "Maternal mortality ratio", "unit": "deaths per 100,000 live births", "shortUnit": "", "includeInTable": true}, "property": "y", "variableId": 959831}], "isPublished": false, "variantName": "World Bank", "selectedEntityNames": ["Sub-Saharan Africa", "South Asia", "World", "Kenya", "Bangladesh", "Brazil"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | maternal-mortality-rate-per-100000-live-births-around-the-world | LineChart | 2015-08-01 19:06:33 | 2024-09-05 09:00:28 | wFeYB0FVS9QruxovUsieeA== |
12 | 12 | 0191b6c7-3653-78fb-aa73-4d2c5ceabe0c | {"id": 73, "map": {"colorScale": {"baseColorScheme": "Oranges", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]}, "timeTolerance": 5}, "slug": "broadband-penetration-by-country", "title": "Landline Internet subscriptions per 100 people", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 33, "subtitle": "Subscriptions to fixed access to the public Internet with a download speed of at least 256 kbit/s.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/internet", "dimensions": [{"display": {"unit": "subscriptions per 100 people", "tolerance": 5, "numDecimalPlaces": 1}, "property": "y", "variableId": 1008192}], "isPublished": true, "relatedQuestions": [{"url": "https://ourworldindata.org/grapher/landline-internet-subscriptions", "text": "Absolute numbers"}], "selectedEntityNames": ["United States", "United Kingdom", "China", "India", "Japan"]} | {"id": 73, "map": {"colorScale": {"baseColorScheme": "Oranges", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]}, "timeTolerance": 5}, "slug": "broadband-penetration-by-country", "title": "Landline Internet subscriptions per 100 people", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 33, "subtitle": "Subscriptions to fixed access to the public Internet with a download speed of at least 256 kbit/s.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/internet", "dimensions": [{"display": {"unit": "subscriptions per 100 people", "tolerance": 5, "numDecimalPlaces": 1}, "property": "y", "variableId": 1008192}], "isPublished": true, "relatedQuestions": [{"url": "https://ourworldindata.org/grapher/landline-internet-subscriptions", "text": "Absolute numbers"}], "selectedEntityNames": ["United States", "United Kingdom", "China", "India", "Japan"]} | broadband-penetration-by-country | LineChart | 2015-08-05 16:50:55 | 2025-01-29 08:48:18 | 0xsd32WhNcztSg3od0Ze8w== |
13 | 13 | 0191b6c7-3657-712e-b6dd-c0b8afd92e0c | {"id": 75, "map": {"colorScale": {"baseColorScheme": "PuRd", "binningStrategy": "manual", "legendDescription": "Average number of pupils per teacher", "customNumericColors": [null], "customNumericValues": [0, 20, 40, 60, 80, 100, 100]}, "timeTolerance": 5}, "tab": "map", "slug": "pupil-teacher-ratio-for-primary-education-by-country", "title": "Pupils per qualified teacher in primary education", "yAxis": {"max": 60, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 1999, "version": 16, "subtitle": "A qualified teacher is one who has the minimum academic qualifications necessary to teach at a [primary](#dod:primary-education) level of education in a given country.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/global-education", "dimensions": [{"property": "y", "variableId": 1031361}], "isPublished": true, "selectedEntityNames": ["Arab World (WB)", "South Asia (WB)", "Sub-Saharan Africa (WB)", "Middle East and North Africa (WB)", "East Asia and the Pacific (WB)"]} | {"id": 75, "map": {"colorScale": {"baseColorScheme": "PuRd", "binningStrategy": "manual", "legendDescription": "Average number of pupils per teacher", "customNumericColors": [null], "customNumericValues": [0, 20, 40, 60, 80, 100, 100]}, "timeTolerance": 5}, "tab": "map", "slug": "pupil-teacher-ratio-for-primary-education-by-country", "title": "Pupils per qualified teacher in primary education", "yAxis": {"max": 60, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 1999, "version": 16, "subtitle": "A qualified teacher is one who has the minimum academic qualifications necessary to teach at a [primary](#dod:primary-education) level of education in a given country.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/global-education", "dimensions": [{"property": "y", "variableId": 1031361}], "isPublished": true, "selectedEntityNames": ["Arab World (WB)", "South Asia (WB)", "Sub-Saharan Africa (WB)", "Middle East and North Africa (WB)", "East Asia and the Pacific (WB)"]} | pupil-teacher-ratio-for-primary-education-by-country | LineChart | 2015-08-05 18:42:30 | 2025-05-14 12:39:15 | DAwyqwYTl2w7W+RGw3FMzQ== |
14 | 14 | 0191b6c7-3659-7de9-96a1-80df996c160f | {"id": 92, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "134", "timeTolerance": 1}, "slug": "united-nations-peacekeeping-forces", "title": "United Nations peacekeepers on active missions by type", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 1992, "version": 14, "subtitle": "Missions include peacekeeping, conflict resolution, peacemaking, peace-building and enforcement. The UN does not have its own military and relies on contributions from member states.", "originUrl": "https://ourworldindata.org/war-and-peace", "chartTypes": ["StackedBar"], "dimensions": [{"display": {"name": "Mission experts and staff officers", "unit": "", "color": "#bc8e5a", "tolerance": 5, "isProjection": false, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 135}, {"display": {"name": "Civilian police", "unit": "", "color": "#425b7c", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 134}, {"display": {"name": "Troops", "unit": "", "color": "#8b1628", "tolerance": 5, "isProjection": false, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 136}], "sourceDesc": "United Nations Peacekeeping (2022)", "isPublished": true, "timelineMinTime": 1992, "hideRelativeToggle": false, "selectedEntityNames": ["World"], "selectedEntityColors": {"World": "#3360a9"}, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 92, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "134", "timeTolerance": 1}, "slug": "united-nations-peacekeeping-forces", "title": "United Nations peacekeepers on active missions by type", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 1992, "version": 14, "subtitle": "Missions include peacekeeping, conflict resolution, peacemaking, peace-building and enforcement. The UN does not have its own military and relies on contributions from member states.", "originUrl": "https://ourworldindata.org/war-and-peace", "chartTypes": ["StackedBar"], "dimensions": [{"display": {"name": "Mission experts and staff officers", "unit": "", "color": "#bc8e5a", "tolerance": 5, "isProjection": false, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 135}, {"display": {"name": "Civilian police", "unit": "", "color": "#425b7c", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 134}, {"display": {"name": "Troops", "unit": "", "color": "#8b1628", "tolerance": 5, "isProjection": false, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 136}], "sourceDesc": "United Nations Peacekeeping (2022)", "isPublished": true, "timelineMinTime": 1992, "hideRelativeToggle": false, "selectedEntityNames": ["World"], "selectedEntityColors": {"World": "#3360a9"}, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | united-nations-peacekeeping-forces | StackedBar | 2015-09-08 17:56:47 | 2024-09-05 09:00:28 | jj0E/BmzkhptBUsTbuBiDg== |
15 | 15 | 0191b6c7-365b-79ff-9ff6-bc8732308f7d | {"id": 93, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "133", "timeTolerance": 1}, "slug": "un-peacekeeping-forces", "title": "United Nations peacekeepers on active missions", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 12, "subtitle": "Peacekeepers include troops, civilian police, experts on mission, and staff officers. Missions include peacekeeping, conflict resolution, peacemaking, peace-building and enforcement. The UN does not have its own military and relies on contributions from member states.", "originUrl": "https://ourworldindata.org/war-and-peace", "dimensions": [{"display": {"name": "Size of total peacekeeping force", "unit": "", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 133}], "hideLegend": true, "sourceDesc": "United Nations Peacekeeping (2022)", "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 93, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "133", "timeTolerance": 1}, "slug": "un-peacekeeping-forces", "title": "United Nations peacekeepers on active missions", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 12, "subtitle": "Peacekeepers include troops, civilian police, experts on mission, and staff officers. Missions include peacekeeping, conflict resolution, peacemaking, peace-building and enforcement. The UN does not have its own military and relies on contributions from member states.", "originUrl": "https://ourworldindata.org/war-and-peace", "dimensions": [{"display": {"name": "Size of total peacekeeping force", "unit": "", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 133}], "hideLegend": true, "sourceDesc": "United Nations Peacekeeping (2022)", "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | un-peacekeeping-forces | LineChart | 2015-09-08 18:00:10 | 2024-09-05 09:00:28 | BEvquBaBt7n9NnbZENdi1w== |
16 | 16 | 0191b6c7-365d-7b37-966e-a0202b6bb995 | {"id": 94, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "132", "timeTolerance": 1}, "slug": "number-un-peacekeeping-missions", "title": "Number of active United Nations peacekeeping missions", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 22, "subtitle": "Included are all active [peacekeeping missions](#dod:peacekeeping).", "originUrl": "https://ourworldindata.org/war-and-peace", "dimensions": [{"display": {"name": "Number of peacekeeping missions", "unit": "", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 132}], "hideLegend": true, "sourceDesc": "United Nations Peacekeeping (2022)", "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 94, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "132", "timeTolerance": 1}, "slug": "number-un-peacekeeping-missions", "title": "Number of active United Nations peacekeeping missions", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 22, "subtitle": "Included are all active [peacekeeping missions](#dod:peacekeeping).", "originUrl": "https://ourworldindata.org/war-and-peace", "dimensions": [{"display": {"name": "Number of peacekeeping missions", "unit": "", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 132}], "hideLegend": true, "sourceDesc": "United Nations Peacekeeping (2022)", "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | number-un-peacekeeping-missions | LineChart | 2015-09-08 18:02:13 | 2024-09-05 09:00:28 | TavDdQt/g+KBghVtfmxMxA== |
17 | 17 | 0191b6c7-365f-7faa-9228-486328c50a14 | {"id": 95, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "timeTolerance": 1}, "slug": "number-of-nuclear-weapons-tests", "title": "Nuclear weapons tests per year", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 26, "originUrl": "https://ourworldindata.org/nuclear-weapons/", "chartTypes": ["StackedBar"], "dimensions": [{"display": {"color": "#7ec7ce", "numDecimalPlaces": 0}, "property": "y", "variableId": 1033213}], "isPublished": true, "baseColorScheme": "owid-distinct", "selectedEntityNames": ["North Korea", "Pakistan", "India", "United Kingdom", "China", "France", "Russia", "United States"], "hideAnnotationFieldsInTitle": {"time": true}} | {"id": 95, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "timeTolerance": 1}, "slug": "number-of-nuclear-weapons-tests", "title": "Nuclear weapons tests per year", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 26, "originUrl": "https://ourworldindata.org/nuclear-weapons/", "chartTypes": ["StackedBar"], "dimensions": [{"display": {"color": "#7ec7ce", "numDecimalPlaces": 0}, "property": "y", "variableId": 1033213}], "isPublished": true, "baseColorScheme": "owid-distinct", "selectedEntityNames": ["North Korea", "Pakistan", "India", "United Kingdom", "China", "France", "Russia", "United States"], "hideAnnotationFieldsInTitle": {"time": true}} | number-of-nuclear-weapons-tests | StackedBar | 2015-09-08 21:12:43 | 2025-05-21 11:47:09 | MvdcT5t3RvX72ygixN5GKg== |
18 | 18 | 0191b6c7-3660-77e9-9936-28104407c251 | {"id": 96, "map": {"time": 1980, "region": "World", "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "colorSchemeInvert": false, "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "binningStrategyBinCount": 5, "customNumericColorsActive": false}, "hideTimeline": false, "timeTolerance": 1, "toleranceStrategy": "closest", "tooltipUseCustomLabels": false}, "tab": "chart", "logo": "owid", "note": "The exact number of countries' warheads is secret, and the estimates are based on publicly available information, historical records, and occasional leaks. Warheads vary substantially in their power.", "slug": "nuclear-warhead-stockpiles", "title": "Estimated share of nuclear warhead stockpiles", "yAxis": {"max": "auto", "min": 0, "scaleType": "linear", "facetDomain": "shared", "canChangeScaleType": false, "removePointsOutsideDomain": false}, "sortBy": "total", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "maxTime": "latest", "minTime": "earliest", "version": 57, "hideLogo": false, "subtitle": "Stockpiles include warheads assigned to military forces, but exclude retired warheads queued for dismantlement.", "hasMapTab": false, "originUrl": "https://ourworldindata.org/nuclear-weapons/", "sortOrder": "desc", "stackMode": "relative", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"unit": "", "color": "#7AC5CD", "zeroDay": "2020-01-21", "tolerance": 0, "yearIsDay": false, "isProjection": false, "roundingMode": "decimalPlaces", "includeInTable": true, "numDecimalPlaces": 0, "numSignificantFigures": 3, "plotMarkersOnlyInLineChart": false}, "property": "y", "variableId": 1033214}], "entityType": "country or region", "hideLegend": false, "isPublished": true, "variantName": "Stacked area", "hideTimeline": false, "addCountryMode": "add-country", "showNoDataArea": true, "showYearLabels": false, "baseColorScheme": "owid-distinct", "comparisonLines": [], "timelineMaxTime": "latest", "timelineMinTime": "earliest", "zoomToSelec… | {"id": 96, "map": {"time": 1980, "region": "World", "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "colorSchemeInvert": false, "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "binningStrategyBinCount": 5, "customNumericColorsActive": false}, "hideTimeline": false, "timeTolerance": 1, "toleranceStrategy": "closest", "tooltipUseCustomLabels": false}, "tab": "chart", "logo": "owid", "note": "The exact number of countries' warheads is secret, and the estimates are based on publicly available information, historical records, and occasional leaks. Warheads vary substantially in their power.", "slug": "nuclear-warhead-stockpiles", "title": "Estimated share of nuclear warhead stockpiles", "yAxis": {"max": "auto", "min": 0, "scaleType": "linear", "facetDomain": "shared", "canChangeScaleType": false, "removePointsOutsideDomain": false}, "sortBy": "total", "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "maxTime": "latest", "minTime": "earliest", "version": 57, "hideLogo": false, "subtitle": "Stockpiles include warheads assigned to military forces, but exclude retired warheads queued for dismantlement.", "hasMapTab": false, "originUrl": "https://ourworldindata.org/nuclear-weapons/", "sortOrder": "desc", "stackMode": "relative", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"unit": "", "color": "#7AC5CD", "zeroDay": "2020-01-21", "tolerance": 0, "yearIsDay": false, "isProjection": false, "roundingMode": "decimalPlaces", "includeInTable": true, "numDecimalPlaces": 0, "numSignificantFigures": 3, "plotMarkersOnlyInLineChart": false}, "property": "y", "variableId": 1033214}], "entityType": "country or region", "hideLegend": false, "isPublished": true, "variantName": "Stacked area", "hideTimeline": false, "addCountryMode": "add-country", "showNoDataArea": true, "showYearLabels": false, "baseColorScheme": "owid-distinct", "comparisonLines": [], "timelineMaxTime": "latest", "timelineMinTime": "earliest", "zoomToSelec… | nuclear-warhead-stockpiles | StackedArea | 2015-09-08 21:53:20 | 2025-05-21 11:47:09 | Aqy+R+4OLsCcI6HxjAopXw== |
19 | 19 | 0191b6c7-3662-7e01-92eb-4d050241e2f2 | {"id": 97, "map": {"colorScale": {"baseColorScheme": "OrRd", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": [null, null, null, null], "customNumericValues": [0, 30, 100, 300, 1000, 3000, 10000, 30000, 100000]}, "timeTolerance": 1}, "tab": "map", "slug": "reported-cases-of-measles", "title": "Reported cases of measles", "yAxis": {"max": 0, "min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 15, "hasMapTab": true, "originUrl": "https://ourworldindata.org/vaccination/", "dimensions": [{"display": {"numDecimalPlaces": 0}, "property": "y", "variableId": 1054313}], "isPublished": true, "selectedEntityNames": ["World"]} | {"id": 97, "map": {"colorScale": {"baseColorScheme": "OrRd", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": [null, null, null, null], "customNumericValues": [0, 30, 100, 300, 1000, 3000, 10000, 30000, 100000]}, "timeTolerance": 1}, "tab": "map", "slug": "reported-cases-of-measles", "title": "Reported cases of measles", "yAxis": {"max": 0, "min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 15, "hasMapTab": true, "originUrl": "https://ourworldindata.org/vaccination/", "dimensions": [{"display": {"numDecimalPlaces": 0}, "property": "y", "variableId": 1054313}], "isPublished": true, "selectedEntityNames": ["World"]} | reported-cases-of-measles | LineChart | 2015-09-09 22:04:57 | 2025-06-05 12:06:26 | BbtobHcYWjEdGoJ4+9BJYA== |
20 | 20 | 0191b6c7-3665-7b29-85e0-76989e5a116c | {"id": 114, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "airliner-hijackings-and-fatalities-from-them", "title": "Airliner hijackings and deaths in them", "yAxis": {"max": 0, "min": 0, "facetDomain": "independent"}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 22, "subtitle": "Based on commercial airliners (passenger-only and cargo) with a capacity for more than 14 passengers.", "originUrl": "https://ourworldindata.org/terrorism/", "chartTypes": ["StackedBar"], "dimensions": [{"display": {"name": "Incidents", "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 930567}, {"display": {"name": "Fatalities", "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 930566}], "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["World"], "selectedFacetStrategy": "metric", "hideAnnotationFieldsInTitle": {"time": true, "changeInPrefix": true}} | {"id": 114, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "airliner-hijackings-and-fatalities-from-them", "title": "Airliner hijackings and deaths in them", "yAxis": {"max": 0, "min": 0, "facetDomain": "independent"}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 22, "subtitle": "Based on commercial airliners (passenger-only and cargo) with a capacity for more than 14 passengers.", "originUrl": "https://ourworldindata.org/terrorism/", "chartTypes": ["StackedBar"], "dimensions": [{"display": {"name": "Incidents", "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 930567}, {"display": {"name": "Fatalities", "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 930566}], "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["World"], "selectedFacetStrategy": "metric", "hideAnnotationFieldsInTitle": {"time": true, "changeInPrefix": true}} | airliner-hijackings-and-fatalities-from-them | StackedBar | 2015-09-21 21:22:54 | 2024-09-05 09:00:28 | 4yOVcc/P8M1ht9pRDX5Y+Q== |
21 | 21 | 0191b6c7-3667-78d6-a738-95dd862692be | {"id": 115, "map": {"time": 1800, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": [], "customNumericLabels": [], "customNumericValues": [0], "customCategoryColors": {}, "customCategoryLabels": {}, "customHiddenCategories": {}}, "columnSlug": "174", "timeTolerance": 1}, "note": "", "slug": "intercontinental-trade-per-capita-1500-1800", "title": "Intercontinental trade per capita, selected countries", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 2, "subtitle": "Intercontinental trade, in £ per capita in constant prices of 1700", "originUrl": "https://ourworldindata.org/trade-and-globalization", "dimensions": [{"display": {"name": "Intercontinental trade, 1500-1800", "unit": "£ per capita", "tolerance": 5, "isProjection": false}, "property": "y", "variableId": 174}], "isPublished": true, "internalNotes": "", "selectedEntityNames": ["Holland", "England and Wales", "Portugal", "Spain", "France"]} | {"id": 115, "map": {"time": 1800, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": [], "customNumericLabels": [], "customNumericValues": [0], "customCategoryColors": {}, "customCategoryLabels": {}, "customHiddenCategories": {}}, "columnSlug": "174", "timeTolerance": 1}, "note": "", "slug": "intercontinental-trade-per-capita-1500-1800", "title": "Intercontinental trade per capita, selected countries", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 2, "subtitle": "Intercontinental trade, in £ per capita in constant prices of 1700", "originUrl": "https://ourworldindata.org/trade-and-globalization", "dimensions": [{"display": {"name": "Intercontinental trade, 1500-1800", "unit": "£ per capita", "tolerance": 5, "isProjection": false}, "property": "y", "variableId": 174}], "isPublished": true, "internalNotes": "", "selectedEntityNames": ["Holland", "England and Wales", "Portugal", "Spain", "France"]} | intercontinental-trade-per-capita-1500-1800 | LineChart | 2015-09-25 19:14:20 | 2024-09-05 09:00:28 | CLoMN+YaBDUqxAc/TosKfQ== |
22 | 22 | 0191b6c7-366a-767f-98d9-d863c9aba66f | {"id": 126, "map": {"time": 2025, "colorScale": {"baseColorScheme": "YlGnBu", "binningStrategy": "manual", "legendDescription": "Logo Life expectancy at age 10", "customNumericColors": ["#ecf8e6", null, "#e0f3db", "#d6efd0", "#ccebc5", "#a8ddb5", "#7bccc4", "#4eb3d3", "#2b8cbe", "#0868ac"], "customNumericValues": [54, 55, 60, 65, 70, 75, 80, 85, 90, 95, -1], "customCategoryColors": {"NA": "#818282", "No data": "#8b8b8b"}, "customHiddenCategories": {"NA": true, "No data": false}}, "columnSlug": "539027", "timeTolerance": 10}, "tab": "map", "slug": "life-expectancy-at-age-15", "title": "Life expectancy at age 15", "yAxis": {"min": "auto"}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 20, "subtitle": "The [period life expectancy](#dod:period-life-expectancy) for people who have reached the age of 15, in a given year. From 2022 onwards, the UN WPP's mid-variant projections are shown.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/life-expectancy/", "dimensions": [{"display": {"name": "e10", "unit": "years", "tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1002341}], "isPublished": true, "selectedEntityNames": ["China", "Brazil", "Sweden", "Italy", "United Kingdom"]} | {"id": 126, "map": {"time": 2025, "colorScale": {"baseColorScheme": "YlGnBu", "binningStrategy": "manual", "legendDescription": "Logo Life expectancy at age 10", "customNumericColors": ["#ecf8e6", null, "#e0f3db", "#d6efd0", "#ccebc5", "#a8ddb5", "#7bccc4", "#4eb3d3", "#2b8cbe", "#0868ac"], "customNumericValues": [54, 55, 60, 65, 70, 75, 80, 85, 90, 95, -1], "customCategoryColors": {"NA": "#818282", "No data": "#8b8b8b"}, "customHiddenCategories": {"NA": true, "No data": false}}, "columnSlug": "539027", "timeTolerance": 10}, "tab": "map", "slug": "life-expectancy-at-age-15", "title": "Life expectancy at age 15", "yAxis": {"min": "auto"}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 20, "subtitle": "The [period life expectancy](#dod:period-life-expectancy) for people who have reached the age of 15, in a given year. From 2022 onwards, the UN WPP's mid-variant projections are shown.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/life-expectancy/", "dimensions": [{"display": {"name": "e10", "unit": "years", "tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1002341}], "isPublished": true, "selectedEntityNames": ["China", "Brazil", "Sweden", "Italy", "United Kingdom"]} | life-expectancy-at-age-15 | LineChart | 2015-10-26 01:39:26 | 2025-02-11 09:37:18 | o9R/BwHEB2MwO1bFTJZFaA== |
23 | 23 | 0191b6c7-366d-70f0-8ba2-b4ea373734f0 | {"id": 128, "map": {"time": 2020, "colorScale": {"baseColorScheme": "Greens", "binningStrategy": "manual", "legendDescription": "Life expectancy at birth", "customNumericColors": ["#43CD80", "#66CD00", "#6baed6", "#3182bd", "#08519c"], "customNumericValues": [25, 65, 70, 75, 80, 85, 90]}, "columnSlug": "446953", "timeTolerance": 1}, "slug": "differences-in-life-expectancy-are-more-regional-than-national", "title": "Life expectancy by world region", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 19, "subtitle": "Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.", "originUrl": "ourworldindata.org/life-expectancy", "dimensions": [{"property": "y", "variableId": 950927}], "isPublished": false, "variantName": "UN", "addCountryMode": "disabled", "selectedEntityNames": ["Oceania (UN)", "Africa (UN)", "Europe (UN)", "Asia (UN)", "Latin America and the Caribbean (UN)", "Northern America (UN)", "World"], "selectedEntityColors": {"World": "#18470f", "Asia (UN)": "#00847e", "Africa (UN)": "#a2559c", "Europe (UN)": "#4c6a9c", "Oceania (UN)": "#9a5129", "Northern America (UN)": "#c4523e", "Latin America and the Caribbean (UN)": "#883039"}} | {"id": 128, "map": {"time": 2020, "colorScale": {"baseColorScheme": "Greens", "binningStrategy": "manual", "legendDescription": "Life expectancy at birth", "customNumericColors": ["#43CD80", "#66CD00", "#6baed6", "#3182bd", "#08519c"], "customNumericValues": [25, 65, 70, 75, 80, 85, 90]}, "columnSlug": "446953", "timeTolerance": 1}, "slug": "differences-in-life-expectancy-are-more-regional-than-national", "title": "Life expectancy by world region", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 19, "subtitle": "Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.", "originUrl": "ourworldindata.org/life-expectancy", "dimensions": [{"property": "y", "variableId": 950927}], "isPublished": false, "variantName": "UN", "addCountryMode": "disabled", "selectedEntityNames": ["Oceania (UN)", "Africa (UN)", "Europe (UN)", "Asia (UN)", "Latin America and the Caribbean (UN)", "Northern America (UN)", "World"], "selectedEntityColors": {"World": "#18470f", "Asia (UN)": "#00847e", "Africa (UN)": "#a2559c", "Europe (UN)": "#4c6a9c", "Oceania (UN)": "#9a5129", "Northern America (UN)": "#c4523e", "Latin America and the Caribbean (UN)": "#883039"}} | differences-in-life-expectancy-are-more-regional-than-national | LineChart | 2015-12-11 07:09:44 | 2024-09-05 09:00:28 | 8KkRoqC8ZicF8H4255MkXg== |
24 | 24 | 0191b6c7-366f-7fde-a995-fcfb742ab6ac | {"id": 133, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "Population with access to improved drinking water", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}, "timeTolerance": 1}, "tab": "map", "note": "Data encompasses both people using basic water services as well as those using safely managed water services. Basic drinking water services is defined as drinking water from an 'improved source', which includes piped water, boreholes or tubewells, protected dug wells, protected springs, and packaged or delivered water. Safely managed water services include improved sources that are accessible on premises, available when needed, and free from faecal and priority chemical contamination.", "slug": "share-of-the-population-with-access-to-improved-drinking-water", "title": "Share of the population using at least basic water services", "yAxis": {"max": 100, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 12, "hasMapTab": true, "originUrl": "https://ourworldindata.org/water-access", "dimensions": [{"display": {"color": "#B0171F"}, "property": "y", "variableId": 1008634}], "isPublished": false, "selectedEntityNames": ["World", "Low-income countries", "High-income countries", "Lower-middle-income countries", "Upper-middle-income countries"], "selectedEntityColors": {"World": "#B0171F"}, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 133, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "Population with access to improved drinking water", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}, "timeTolerance": 1}, "tab": "map", "note": "Data encompasses both people using basic water services as well as those using safely managed water services. Basic drinking water services is defined as drinking water from an 'improved source', which includes piped water, boreholes or tubewells, protected dug wells, protected springs, and packaged or delivered water. Safely managed water services include improved sources that are accessible on premises, available when needed, and free from faecal and priority chemical contamination.", "slug": "share-of-the-population-with-access-to-improved-drinking-water", "title": "Share of the population using at least basic water services", "yAxis": {"max": 100, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 12, "hasMapTab": true, "originUrl": "https://ourworldindata.org/water-access", "dimensions": [{"display": {"color": "#B0171F"}, "property": "y", "variableId": 1008634}], "isPublished": false, "selectedEntityNames": ["World", "Low-income countries", "High-income countries", "Lower-middle-income countries", "Upper-middle-income countries"], "selectedEntityColors": {"World": "#B0171F"}, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | share-of-the-population-with-access-to-improved-drinking-water | LineChart | 2016-01-06 06:43:18 | 2025-01-29 08:48:19 | D+81ZvWcSXyx6QgviUMZTw== |
25 | 25 | 0191b6c7-3671-75f2-8ff7-cbd5b2056509 | {"id": 134, "map": {"colorScale": {"baseColorScheme": "PuBuGn", "binningStrategy": "manual", "legendDescription": "Trade as share of GDP (in %)", "customNumericColors": ["#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0, 10, 20, 50, 100, 200, 1]}, "timeTolerance": 1}, "tab": "map", "slug": "trade-as-share-of-gdp", "title": "Trade as a share of GDP", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 21, "subtitle": "Sum of exports and imports of goods and services, divided by gross domestic product, expressed as a percentage. This is also known as the \"trade openness index\".", "hasMapTab": true, "originUrl": "https://ourworldindata.org/trade-and-globalization", "dimensions": [{"display": {"unit": "% of GDP", "color": "#3A5FCD", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 1008278}], "isPublished": true, "selectedEntityNames": ["World", "China", "India", "United States"]} | {"id": 134, "map": {"colorScale": {"baseColorScheme": "PuBuGn", "binningStrategy": "manual", "legendDescription": "Trade as share of GDP (in %)", "customNumericColors": ["#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0, 10, 20, 50, 100, 200, 1]}, "timeTolerance": 1}, "tab": "map", "slug": "trade-as-share-of-gdp", "title": "Trade as a share of GDP", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 21, "subtitle": "Sum of exports and imports of goods and services, divided by gross domestic product, expressed as a percentage. This is also known as the \"trade openness index\".", "hasMapTab": true, "originUrl": "https://ourworldindata.org/trade-and-globalization", "dimensions": [{"display": {"unit": "% of GDP", "color": "#3A5FCD", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 1008278}], "isPublished": true, "selectedEntityNames": ["World", "China", "India", "United States"]} | trade-as-share-of-gdp | LineChart | 2016-01-06 07:12:38 | 2025-04-07 09:34:32 | t9yBGfTrUHWUM6ny5YRr4g== |
26 | 26 | 0191b6c7-3674-787d-a5c5-11ce3d5c51eb | {"id": 136, "map": {"colorScale": {"baseColorScheme": "PiYG", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c", null, null], "customNumericValues": [0, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 4]}, "timeTolerance": 1}, "tab": "map", "slug": "foreign-direct-investment-net-inflows-as-share-of-gdp", "title": "Foreign direct investment, net inflows as share of GDP", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 17, "subtitle": "Net inflows of [foreign direct investment](#dod:fdi) from foreign investors to the reporting economy.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/trade-and-globalization", "dimensions": [{"display": {"name": "", "unit": "% of GDP", "tolerance": 5}, "property": "y", "variableId": 1007726}], "isPublished": true, "selectedEntityNames": ["World", "South Asia", "Sub-Saharan Africa"], "selectedEntityColors": {"World": "#18470f", "South Asia": "#286bbb", "Sub-Saharan Africa": "#8c4569"}} | {"id": 136, "map": {"colorScale": {"baseColorScheme": "PiYG", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c", null, null], "customNumericValues": [0, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 4]}, "timeTolerance": 1}, "tab": "map", "slug": "foreign-direct-investment-net-inflows-as-share-of-gdp", "title": "Foreign direct investment, net inflows as share of GDP", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 17, "subtitle": "Net inflows of [foreign direct investment](#dod:fdi) from foreign investors to the reporting economy.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/trade-and-globalization", "dimensions": [{"display": {"name": "", "unit": "% of GDP", "tolerance": 5}, "property": "y", "variableId": 1007726}], "isPublished": true, "selectedEntityNames": ["World", "South Asia", "Sub-Saharan Africa"], "selectedEntityColors": {"World": "#18470f", "South Asia": "#286bbb", "Sub-Saharan Africa": "#8c4569"}} | foreign-direct-investment-net-inflows-as-share-of-gdp | LineChart | 2016-01-07 06:02:41 | 2025-01-29 08:48:20 | Y3Q9kuR/MGMcLBWyxHXYQQ== |
27 | 27 | 0191b6c7-3676-7558-8dc9-bfc6d54c43dd | {"id": 144, "map": {"colorScale": {"baseColorScheme": "RdYlGn", "binningStrategy": "manual", "legendDescription": "Freedom of the Press Status", "customNumericColors": ["#B0171F", "#FFEC8B", "#2E8B57"], "customNumericLabels": ["Not free", "Partly free", "Free"], "customNumericValues": [0, 0.5, 1.5, 2], "customCategoryLabels": {"No data": "No data"}}, "columnSlug": "192", "tooltipUseCustomLabels": true}, "tab": "map", "note": "", "slug": "press-freedom-fh", "title": "Press freedom", "yAxis": {"max": 2, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 23, "subtitle": "Based on the classification and data by [Freedom House](#dod:freedom-house). It captures the legal, political, and economic environment of the press.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/human-rights/", "colorScale": {"binningStrategy": "manual", "customNumericColors": ["#fc8d59", "#ffffbf", "#91cf60"], "customNumericLabels": ["Not free", "Partly free", "Free"], "customNumericValues": [0, 0.5, 1.5, 2], "customNumericColorsActive": true}, "dimensions": [{"display": {"name": "", "unit": "", "shortUnit": "", "tolerance": 5, "isProjection": false, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 192}, {"property": "color", "variableId": 192}], "sourceDesc": "OWID based on Freedom House (2017)", "isPublished": true, "variantName": "Freedom House", "relatedQuestions": [{"url": "https://ourworldindata.org/explorers/democracy", "text": "How do different approaches score democracy across the world?"}], "selectedEntityNames": ["Australia", "Argentina", "Botswana", "China"], "selectedFacetStrategy": "entity", "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 144, "map": {"colorScale": {"baseColorScheme": "RdYlGn", "binningStrategy": "manual", "legendDescription": "Freedom of the Press Status", "customNumericColors": ["#B0171F", "#FFEC8B", "#2E8B57"], "customNumericLabels": ["Not free", "Partly free", "Free"], "customNumericValues": [0, 0.5, 1.5, 2], "customCategoryLabels": {"No data": "No data"}}, "columnSlug": "192", "tooltipUseCustomLabels": true}, "tab": "map", "note": "", "slug": "press-freedom-fh", "title": "Press freedom", "yAxis": {"max": 2, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 23, "subtitle": "Based on the classification and data by [Freedom House](#dod:freedom-house). It captures the legal, political, and economic environment of the press.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/human-rights/", "colorScale": {"binningStrategy": "manual", "customNumericColors": ["#fc8d59", "#ffffbf", "#91cf60"], "customNumericLabels": ["Not free", "Partly free", "Free"], "customNumericValues": [0, 0.5, 1.5, 2], "customNumericColorsActive": true}, "dimensions": [{"display": {"name": "", "unit": "", "shortUnit": "", "tolerance": 5, "isProjection": false, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 192}, {"property": "color", "variableId": 192}], "sourceDesc": "OWID based on Freedom House (2017)", "isPublished": true, "variantName": "Freedom House", "relatedQuestions": [{"url": "https://ourworldindata.org/explorers/democracy", "text": "How do different approaches score democracy across the world?"}], "selectedEntityNames": ["Australia", "Argentina", "Botswana", "China"], "selectedFacetStrategy": "entity", "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | press-freedom-fh | LineChart | 2016-01-23 23:19:57 | 2025-04-08 15:45:14 | DR9D08aCgh3WYdMS9/IghQ== |
28 | 28 | 0191b6c7-3678-753b-9014-e50d6632c19f | {"id": 150, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0]}, "timeTolerance": 1}, "note": "GDP per capita is expressed in [international-$](#dod:int_dollar_abbreviation) at 2021 prices.", "slug": "disease-burden-to-communicable-diseases-vs-gdp", "title": "Disease burden due to communicable diseases vs. GDP per capita", "xAxis": {"scaleType": "log", "canChangeScaleType": true}, "yAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 39, "subtitle": "Disease burden to communicable, maternal, neonatal and nutritional diseases, measured in DALYs (Disability-Adjusted Life Years) per 100,000 individuals versus gross domestic product (GDP) per capita, adjusted for inflation and for differences in living costs between countries.", "originUrl": "https://ourworldindata.org/burden-of-disease/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "DALYs lost per 100,000 people", "unit": "DALYs lost per 100,000 people", "includeInTable": true}, "property": "y", "variableId": 929456}, {"property": "x", "variableId": 1008370}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "matchingEntitiesOnly": true} | {"id": 150, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0]}, "timeTolerance": 1}, "note": "GDP per capita is expressed in [international-$](#dod:int_dollar_abbreviation) at 2021 prices.", "slug": "disease-burden-to-communicable-diseases-vs-gdp", "title": "Disease burden due to communicable diseases vs. GDP per capita", "xAxis": {"scaleType": "log", "canChangeScaleType": true}, "yAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 39, "subtitle": "Disease burden to communicable, maternal, neonatal and nutritional diseases, measured in DALYs (Disability-Adjusted Life Years) per 100,000 individuals versus gross domestic product (GDP) per capita, adjusted for inflation and for differences in living costs between countries.", "originUrl": "https://ourworldindata.org/burden-of-disease/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "DALYs lost per 100,000 people", "unit": "DALYs lost per 100,000 people", "includeInTable": true}, "property": "y", "variableId": 929456}, {"property": "x", "variableId": 1008370}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "matchingEntitiesOnly": true} | disease-burden-to-communicable-diseases-vs-gdp | ScatterPlot | 2016-01-25 20:50:11 | 2025-01-30 18:23:07 | LZrIB+VhBCqqZ/2/0Peuqg== |
29 | 29 | 0191b6c7-367a-73c3-ac3d-48263ad831ea | {"id": 160, "map": {"colorScale": {"baseColorScheme": "Oranges", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0, 5, 10, 20, 30, 40, 50, 60, 70]}, "timeTolerance": 4}, "slug": "incidence-of-child-labour", "title": "Share of children in employment", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 11, "subtitle": "Share of children ages 7-14 involved in economic activity for at least one hour in the reference week of the corresponding survey (irrespective of school attendance).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/child-labor/", "dimensions": [{"property": "y", "variableId": 1008846}], "isPublished": true, "selectedEntityNames": ["Nepal", "Uganda", "Vietnam", "Philippines", "Brazil", "Turkey"]} | {"id": 160, "map": {"colorScale": {"baseColorScheme": "Oranges", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0, 5, 10, 20, 30, 40, 50, 60, 70]}, "timeTolerance": 4}, "slug": "incidence-of-child-labour", "title": "Share of children in employment", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 11, "subtitle": "Share of children ages 7-14 involved in economic activity for at least one hour in the reference week of the corresponding survey (irrespective of school attendance).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/child-labor/", "dimensions": [{"property": "y", "variableId": 1008846}], "isPublished": true, "selectedEntityNames": ["Nepal", "Uganda", "Vietnam", "Philippines", "Brazil", "Turkey"]} | incidence-of-child-labour | LineChart | 2016-02-10 01:28:24 | 2025-01-29 08:48:20 | 7SMokyLTBGY5TRFDrskA6A== |
30 | 30 | 0191b6c7-367c-7c5e-a421-bdf3d55b32b8 | {"id": 161, "map": {"time": 2017, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "timeTolerance": 1}, "note": "Poverty data is measured in [international-$](#dod:int_dollar_abbreviation) at 2017 prices. Depending on the country and year, it relates to income measured after taxes and benefits or consumption per capita.", "slug": "poverty-and-child-mortality", "title": "Extreme poverty and child mortality", "xAxis": {"min": 0}, "yAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 56, "subtitle": "The estimated share of newborns who die before reaching the age of five. This is compared to extreme poverty, which is defined as living below the International Poverty Line of $2.15 per day.", "originUrl": "https://ourworldindata.org/child-mortality/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Child mortality", "tolerance": 5}, "property": "y", "variableId": 1027772}, {"display": {"name": "Share of population in extreme poverty (less than $2.15 a day)", "unit": "%"}, "property": "x", "variableId": 1035136}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": false, "hideRelativeToggle": false, "matchingEntitiesOnly": true} | {"id": 161, "map": {"time": 2017, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "timeTolerance": 1}, "note": "Poverty data is measured in [international-$](#dod:int_dollar_abbreviation) at 2017 prices. Depending on the country and year, it relates to income measured after taxes and benefits or consumption per capita.", "slug": "poverty-and-child-mortality", "title": "Extreme poverty and child mortality", "xAxis": {"min": 0}, "yAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 56, "subtitle": "The estimated share of newborns who die before reaching the age of five. This is compared to extreme poverty, which is defined as living below the International Poverty Line of $2.15 per day.", "originUrl": "https://ourworldindata.org/child-mortality/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Child mortality", "tolerance": 5}, "property": "y", "variableId": 1027772}, {"display": {"name": "Share of population in extreme poverty (less than $2.15 a day)", "unit": "%"}, "property": "x", "variableId": 1035136}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": false, "hideRelativeToggle": false, "matchingEntitiesOnly": true} | poverty-and-child-mortality | ScatterPlot | 2016-02-18 06:19:17 | 2025-05-29 20:23:54 | sfq5u8kjFnq9WcRpPYCWWQ== |
31 | 31 | 0191b6c7-367e-77f2-86c5-afdc6561ed10 | {"id": 164, "map": {"colorScale": {"baseColorScheme": "Oranges", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 100]}, "timeTolerance": 4}, "slug": "share-of-working-children-who-work-only", "title": "Share of working children who do not attend school", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 12, "subtitle": "Share of children ages 7-14 working at least 1 hour per week and not attending school, as a share of all children working at least 1 hour per week.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/child-labor/", "dimensions": [{"property": "y", "variableId": 1008845}], "isPublished": true, "selectedEntityNames": ["Chad", "Ethiopia", "Colombia", "Cameroon", "Nepal", "Brazil"]} | {"id": 164, "map": {"colorScale": {"baseColorScheme": "Oranges", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 100]}, "timeTolerance": 4}, "slug": "share-of-working-children-who-work-only", "title": "Share of working children who do not attend school", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 12, "subtitle": "Share of children ages 7-14 working at least 1 hour per week and not attending school, as a share of all children working at least 1 hour per week.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/child-labor/", "dimensions": [{"property": "y", "variableId": 1008845}], "isPublished": true, "selectedEntityNames": ["Chad", "Ethiopia", "Colombia", "Cameroon", "Nepal", "Brazil"]} | share-of-working-children-who-work-only | LineChart | 2016-02-18 21:24:23 | 2025-01-29 08:48:21 | SrFojmXs2OK+yEzJeee0VA== |
32 | 32 | 0191b6c7-3680-7252-8de4-29fa8c3ceca4 | {"id": 166, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0]}, "columnSlug": "217", "timeTolerance": 1}, "note": "Cunningham, Hugh, and Pier Paolo Viazzo. \"Child Labour in Historical Perspective 1800-1985: Case Studies from Europe.\" Japan and Colombia, UNICEF, Florence (1996).", "slug": "incidence-of-child-labor-in-the-uk", "title": "Child labor", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 7, "subtitle": "Share of boys and girls (ages 10-14) recorded as working.", "originUrl": "https://ourworldindata.org/child-labor/", "dimensions": [{"display": {"name": "Girls", "unit": "% of girls ages 10-14", "color": "#be5915", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 225}, {"display": {"name": "Boys", "unit": "% of boys ages 10-14", "color": "#6d3e91", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 217}], "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["United Kingdom"]} | {"id": 166, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0]}, "columnSlug": "217", "timeTolerance": 1}, "note": "Cunningham, Hugh, and Pier Paolo Viazzo. \"Child Labour in Historical Perspective 1800-1985: Case Studies from Europe.\" Japan and Colombia, UNICEF, Florence (1996).", "slug": "incidence-of-child-labor-in-the-uk", "title": "Child labor", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 7, "subtitle": "Share of boys and girls (ages 10-14) recorded as working.", "originUrl": "https://ourworldindata.org/child-labor/", "dimensions": [{"display": {"name": "Girls", "unit": "% of girls ages 10-14", "color": "#be5915", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 225}, {"display": {"name": "Boys", "unit": "% of boys ages 10-14", "color": "#6d3e91", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 217}], "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["United Kingdom"]} | incidence-of-child-labor-in-the-uk | LineChart | 2016-02-19 02:07:59 | 2024-09-05 09:00:28 | nzuB6Tzr0oxFJsvVJx2n4Q== |
33 | 33 | 0191b6c7-3682-783b-8ac8-52e9345387ab | {"id": 171, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "columnSlug": "223", "timeTolerance": 1}, "slug": "global-incidence-of-child-labor-2", "title": "Global incidence of child labor", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 7, "subtitle": "Share of children ages 5-17 involved in economic activity for at least one hour in the reference week of the corresponding survey (irrespective of school attendance).", "originUrl": "https://ourworldindata.org/child-labor/", "dimensions": [{"display": {"name": "Girls", "unit": "% girls ages 5-17", "color": "#be5915", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 236}, {"display": {"name": "Boys", "unit": "% boys ages 5-17", "color": "#6d3e91", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 235}, {"display": {"name": "Both genders", "unit": "% children ages 5-17", "color": "#18470f", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 223}], "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 171, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "columnSlug": "223", "timeTolerance": 1}, "slug": "global-incidence-of-child-labor-2", "title": "Global incidence of child labor", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 7, "subtitle": "Share of children ages 5-17 involved in economic activity for at least one hour in the reference week of the corresponding survey (irrespective of school attendance).", "originUrl": "https://ourworldindata.org/child-labor/", "dimensions": [{"display": {"name": "Girls", "unit": "% girls ages 5-17", "color": "#be5915", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 236}, {"display": {"name": "Boys", "unit": "% boys ages 5-17", "color": "#6d3e91", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 235}, {"display": {"name": "Both genders", "unit": "% children ages 5-17", "color": "#18470f", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 223}], "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | global-incidence-of-child-labor-2 | LineChart | 2016-02-19 03:57:43 | 2024-09-05 09:00:28 | MOII10WDlkok984+MaPvnA== |
34 | 34 | 0191b6c7-3684-774f-87c3-b3de776e629c | {"id": 175, "map": {"time": 1961, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "columnSlug": "227", "timeTolerance": 1}, "note": "Toniolo, Gianni, and Giovanni Vecchi. \"Italian Children at Work, 1881—1961\". Giornale degli economisti e Annali di economia (2007): 401-427. Toniolo, G., & Vecchi, G. (2007). Based on estimates from population census data.", "slug": "incidence-of-child-labor-in-italy", "title": "Child labor in Italy", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 6, "subtitle": "Share of children ages 10-14 recorded as working.", "originUrl": "https://ourworldindata.org/child-labor/", "dimensions": [{"display": {"name": "Boys", "unit": "% boys ages 10-14", "color": "#be5915", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 226}, {"display": {"name": "Both sexes", "unit": "% of children ages 10-14", "color": "#18470f", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 216}, {"display": {"name": "Girls", "unit": "% girls ages 10-14", "color": "#6d3e91", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 227}], "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["Italy"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 175, "map": {"time": 1961, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "columnSlug": "227", "timeTolerance": 1}, "note": "Toniolo, Gianni, and Giovanni Vecchi. \"Italian Children at Work, 1881—1961\". Giornale degli economisti e Annali di economia (2007): 401-427. Toniolo, G., & Vecchi, G. (2007). Based on estimates from population census data.", "slug": "incidence-of-child-labor-in-italy", "title": "Child labor in Italy", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 6, "subtitle": "Share of children ages 10-14 recorded as working.", "originUrl": "https://ourworldindata.org/child-labor/", "dimensions": [{"display": {"name": "Boys", "unit": "% boys ages 10-14", "color": "#be5915", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 226}, {"display": {"name": "Both sexes", "unit": "% of children ages 10-14", "color": "#18470f", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 216}, {"display": {"name": "Girls", "unit": "% girls ages 10-14", "color": "#6d3e91", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 227}], "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["Italy"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | incidence-of-child-labor-in-italy | LineChart | 2016-02-20 23:55:52 | 2024-09-05 09:00:28 | 0lqYzKP9+uuC/36vUoYSZA== |
35 | 35 | 0191b6c7-3685-71a5-8266-f498bf799956 | {"id": 176, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "columnSlug": "243", "timeTolerance": 1}, "slug": "global-incidence-of-child-labour", "title": "Global share of children aged 10-14 in the labor force", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 4, "originUrl": "https://ourworldindata.org/child-labor/", "dimensions": [{"display": {"name": "Child Labour (World 1950-1995)", "unit": "% children ages 10-14", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 243}], "hideLegend": true, "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 176, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "columnSlug": "243", "timeTolerance": 1}, "slug": "global-incidence-of-child-labour", "title": "Global share of children aged 10-14 in the labor force", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 4, "originUrl": "https://ourworldindata.org/child-labor/", "dimensions": [{"display": {"name": "Child Labour (World 1950-1995)", "unit": "% children ages 10-14", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 243}], "hideLegend": true, "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | global-incidence-of-child-labour | LineChart | 2016-02-22 23:13:53 | 2024-09-05 09:00:28 | 8B20bLfB0StpHlfD5e+h2g== |
36 | 36 | 0191b6c7-3687-73d3-8bd4-00ee5015f800 | {"id": 177, "map": {"time": 2016, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "timeTolerance": 1}, "slug": "incidence-of-child-labour-boys-vs-girls", "title": "Share of children in employment, boys vs. girls", "xAxis": {"max": 65, "min": 0}, "yAxis": {"max": 65, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 25, "subtitle": "Share of boys (vs. girls) ages 7-14 involved in economic activity for at least one hour in the reference week of the corresponding survey (irrespective of school attendance).", "originUrl": "https://ourworldindata.org/child-labor/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Share of girls aged 7–14 in employment", "unit": "%", "tolerance": 5}, "property": "y", "variableId": 1008830}, {"display": {"name": "Share of boys aged 7–14 in employment", "unit": "%", "tolerance": 5}, "property": "x", "variableId": 1008833}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "comparisonLines": [{}], "hideRelativeToggle": false} | {"id": 177, "map": {"time": 2016, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "timeTolerance": 1}, "slug": "incidence-of-child-labour-boys-vs-girls", "title": "Share of children in employment, boys vs. girls", "xAxis": {"max": 65, "min": 0}, "yAxis": {"max": 65, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 25, "subtitle": "Share of boys (vs. girls) ages 7-14 involved in economic activity for at least one hour in the reference week of the corresponding survey (irrespective of school attendance).", "originUrl": "https://ourworldindata.org/child-labor/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Share of girls aged 7–14 in employment", "unit": "%", "tolerance": 5}, "property": "y", "variableId": 1008830}, {"display": {"name": "Share of boys aged 7–14 in employment", "unit": "%", "tolerance": 5}, "property": "x", "variableId": 1008833}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "comparisonLines": [{}], "hideRelativeToggle": false} | incidence-of-child-labour-boys-vs-girls | ScatterPlot | 2016-02-23 00:33:45 | 2025-01-29 08:48:22 | /nRgIeef3jgjmtSJm9+jGA== |
37 | 37 | 0191b6c7-3688-7cef-a454-ec9129f83312 | {"id": 178, "map": {"time": 2014, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "timeTolerance": 1}, "slug": "per-capita-total-expenditure-on-health-vs-child-mortality", "title": "Child mortality vs. per capita health spending", "xAxis": {"scaleType": "log", "canChangeScaleType": true}, "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 39, "subtitle": "The estimated share of newborns who die before the age of five. Healthcare expenditure per capita is measured in current international-$, which adjusts for price differences between countries.", "originUrl": "https://ourworldindata.org/child-mortality/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Child mortality", "tolerance": 1, "includeInTable": true}, "property": "y", "variableId": 1027772}, {"display": {"name": "Current health expenditure per capita, PPP", "tolerance": 1, "includeInTable": true}, "property": "x", "variableId": 1008740}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": false, "hideRelativeToggle": false, "matchingEntitiesOnly": true} | {"id": 178, "map": {"time": 2014, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "timeTolerance": 1}, "slug": "per-capita-total-expenditure-on-health-vs-child-mortality", "title": "Child mortality vs. per capita health spending", "xAxis": {"scaleType": "log", "canChangeScaleType": true}, "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 39, "subtitle": "The estimated share of newborns who die before the age of five. Healthcare expenditure per capita is measured in current international-$, which adjusts for price differences between countries.", "originUrl": "https://ourworldindata.org/child-mortality/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Child mortality", "tolerance": 1, "includeInTable": true}, "property": "y", "variableId": 1027772}, {"display": {"name": "Current health expenditure per capita, PPP", "tolerance": 1, "includeInTable": true}, "property": "x", "variableId": 1008740}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": false, "hideRelativeToggle": false, "matchingEntitiesOnly": true} | per-capita-total-expenditure-on-health-vs-child-mortality | ScatterPlot | 2016-02-23 21:22:21 | 2025-06-06 08:59:06 | dxY48qJz+RU5s6prHu/kKA== |
38 | 38 | 0191b6c7-368a-7cfc-834a-faf340d4df1b | {"id": 179, "map": {"time": 1994, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0]}, "timeTolerance": 1}, "note": "GDP per capita is expressed in [international-$](#dod:int_dollar_abbreviation) at 2021 prices.", "slug": "incidence-of-child-labour-vs-gdp-per-capita", "title": "Share of children in employment vs. GDP per capita", "yAxis": {"max": 75, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 24, "subtitle": "Bubble sizes are proportional to the population of children aged 5-14 in each country. GDP per capita is adjusted for inflation and for differences in living costs between countries.", "originUrl": "https://ourworldindata.org/child-labor/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Percent of children (7-14) in employment", "tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1008846}, {"display": {"tolerance": 5, "includeInTable": true}, "property": "x", "variableId": 1008370}, {"display": {"name": "Population", "includeInTable": true}, "property": "size", "variableId": 950993}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false} | {"id": 179, "map": {"time": 1994, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0]}, "timeTolerance": 1}, "note": "GDP per capita is expressed in [international-$](#dod:int_dollar_abbreviation) at 2021 prices.", "slug": "incidence-of-child-labour-vs-gdp-per-capita", "title": "Share of children in employment vs. GDP per capita", "yAxis": {"max": 75, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 24, "subtitle": "Bubble sizes are proportional to the population of children aged 5-14 in each country. GDP per capita is adjusted for inflation and for differences in living costs between countries.", "originUrl": "https://ourworldindata.org/child-labor/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Percent of children (7-14) in employment", "tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1008846}, {"display": {"tolerance": 5, "includeInTable": true}, "property": "x", "variableId": 1008370}, {"display": {"name": "Population", "includeInTable": true}, "property": "size", "variableId": 950993}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false} | incidence-of-child-labour-vs-gdp-per-capita | ScatterPlot | 2016-02-23 22:10:18 | 2025-01-30 18:23:09 | N3HmDbVrupZR0WfvPfTdgg== |
39 | 39 | 0191b6c7-368b-7f87-85fe-12e87d58d362 | {"id": 185, "map": {"time": 2017, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0]}, "timeTolerance": 1}, "note": "This data is expressed in [international-$](#dod:int_dollar_abbreviation) at 2017 prices. Depending on the country and year, poverty data relates to income measured after taxes and benefits or consumption [per capita](#dod:per-capita).", "slug": "the-share-of-people-living-in-extreme-poverty-vs-gdp-per-capita", "title": "Share of population living in extreme poverty vs. GDP per capita", "xAxis": {"scaleType": "log", "canChangeScaleType": true}, "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 51, "subtitle": "Extreme poverty is defined as living below the International Poverty Line of $2.15 per day. This data is adjusted for inflation and differences in living costs between countries.", "originUrl": "https://ourworldindata.org/poverty", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Share in extreme poverty"}, "property": "y", "variableId": 1035136}, {"property": "x", "variableId": 905490}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "excludedEntityNames": ["World"]} | {"id": 185, "map": {"time": 2017, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"], "customNumericValues": [0]}, "timeTolerance": 1}, "note": "This data is expressed in [international-$](#dod:int_dollar_abbreviation) at 2017 prices. Depending on the country and year, poverty data relates to income measured after taxes and benefits or consumption [per capita](#dod:per-capita).", "slug": "the-share-of-people-living-in-extreme-poverty-vs-gdp-per-capita", "title": "Share of population living in extreme poverty vs. GDP per capita", "xAxis": {"scaleType": "log", "canChangeScaleType": true}, "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 51, "subtitle": "Extreme poverty is defined as living below the International Poverty Line of $2.15 per day. This data is adjusted for inflation and differences in living costs between countries.", "originUrl": "https://ourworldindata.org/poverty", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Share in extreme poverty"}, "property": "y", "variableId": 1035136}, {"property": "x", "variableId": 905490}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "excludedEntityNames": ["World"]} | the-share-of-people-living-in-extreme-poverty-vs-gdp-per-capita | ScatterPlot | 2016-02-27 20:12:08 | 2025-05-29 20:23:54 | +iJ8l1VnH/O9Mcfun19rSQ== |
40 | 40 | 0191b6c7-368d-750a-bc2c-25ebf62aecb4 | {"id": 189, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "Real GDP per capita (in 2005 international dollars)", "customNumericColors": ["#c00", "#00c", null], "customNumericValues": [0, 1000, 2000, 5000, 10000, 20000, 50000, 100000]}}, "tab": "map", "note": "This data is expressed in [international-$](#dod:int_dollar_abbreviation) at 2017 prices, using multiple benchmark years to adjust for differences in living costs between countries over time.", "slug": "gdp-per-capita-penn-world-table", "title": "GDP per capita", "yAxis": {"min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 45, "subtitle": "This data is adjusted for inflation and for differences in living costs between countries.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/economic-growth", "dimensions": [{"display": {"tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 539760}], "isPublished": true, "variantName": "Penn World Table, constant international-$", "hideRelativeToggle": false, "selectedEntityNames": ["Germany", "United States", "China", "United Kingdom", "Japan", "India", "France", "South Korea"]} | {"id": 189, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "Real GDP per capita (in 2005 international dollars)", "customNumericColors": ["#c00", "#00c", null], "customNumericValues": [0, 1000, 2000, 5000, 10000, 20000, 50000, 100000]}}, "tab": "map", "note": "This data is expressed in [international-$](#dod:int_dollar_abbreviation) at 2017 prices, using multiple benchmark years to adjust for differences in living costs between countries over time.", "slug": "gdp-per-capita-penn-world-table", "title": "GDP per capita", "yAxis": {"min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 45, "subtitle": "This data is adjusted for inflation and for differences in living costs between countries.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/economic-growth", "dimensions": [{"display": {"tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 539760}], "isPublished": true, "variantName": "Penn World Table, constant international-$", "hideRelativeToggle": false, "selectedEntityNames": ["Germany", "United States", "China", "United Kingdom", "Japan", "India", "France", "South Korea"]} | gdp-per-capita-penn-world-table | LineChart | 2016-02-27 22:26:10 | 2025-01-30 18:23:10 | QvzGZ1J+TVaawbMllAnAlQ== |
41 | 41 | 0191b6c7-368f-7332-b559-633234786693 | {"id": 190, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "columnSlug": "250", "timeTolerance": 1}, "note": "The price is adjusted for inflation and expressed in prices for the year 2000. Shown is a 5-year moving average.", "slug": "the-price-for-lighting-per-million-lumen-hours-in-the-uk-in-british-pound", "title": "The price for lighting in the United Kingdom", "yAxis": {"max": 0, "min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 6, "subtitle": "The price per million lumen-hours in British Pound. 1 lumen-hour is equal to the luminous energy emitted in 1 hour by a light source emitting a luminous flux of 1 lumen. For comparison: a standard 100W incandescent light bulb emits around 1700 lumen.", "originUrl": "https://ourworldindata.org/light-at-night", "dimensions": [{"display": {"name": "Price for Light – Fouquet", "unit": "British Pound per million lumen-hours", "color": "#B0171F", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 250}], "hideLegend": true, "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["Price for Lightning"], "selectedEntityColors": {"Price for Lightning": "#B0171F"}, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 190, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "columnSlug": "250", "timeTolerance": 1}, "note": "The price is adjusted for inflation and expressed in prices for the year 2000. Shown is a 5-year moving average.", "slug": "the-price-for-lighting-per-million-lumen-hours-in-the-uk-in-british-pound", "title": "The price for lighting in the United Kingdom", "yAxis": {"max": 0, "min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 6, "subtitle": "The price per million lumen-hours in British Pound. 1 lumen-hour is equal to the luminous energy emitted in 1 hour by a light source emitting a luminous flux of 1 lumen. For comparison: a standard 100W incandescent light bulb emits around 1700 lumen.", "originUrl": "https://ourworldindata.org/light-at-night", "dimensions": [{"display": {"name": "Price for Light – Fouquet", "unit": "British Pound per million lumen-hours", "color": "#B0171F", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 250}], "hideLegend": true, "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["Price for Lightning"], "selectedEntityColors": {"Price for Lightning": "#B0171F"}, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | the-price-for-lighting-per-million-lumen-hours-in-the-uk-in-british-pound | LineChart | 2016-02-27 22:50:15 | 2024-09-05 09:00:28 | 1TX6CfnFpgjaBwTKt/2/Ww== |
42 | 42 | 0191b6c7-3692-7881-937d-39fd3e2f2ff5 | {"id": 194, "map": {"time": 2025, "colorScale": {"baseColorScheme": "RdYlBu", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#543005", "#8c510a", "#bf812d", "#dfc27d", "#f6e8c3", "#c7eae5", "#80cdc1", "#35978f", "#01665e", "#003c30", "#", "#"], "customNumericLabels": ["", "", "", "", "", "", "", ""], "customNumericValues": [-6, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5], "customCategoryColors": {"No data": "#adacac"}, "customNumericColorsActive": true}, "columnSlug": "950928", "timeTolerance": 5}, "slug": "population-growth-rates", "title": "Population growth rate", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 41, "subtitle": "[Population growth rate](#dod:population-growth-rate) takes births, deaths and migration into account. Future projections are based on the [UN medium scenario](#dod:un-projection-scenarios).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/population-growth/", "dimensions": [{"display": {"name": "", "unit": "%", "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 950924}, {"display": {"name": "Population growth rate (%)", "unit": "%", "isProjection": true, "includeInTable": true, "numDecimalPlaces": 2}, "property": "y", "variableId": 950928}], "isPublished": true, "variantName": "with UN projections", "addCountryMode": "change-country", "selectedEntityNames": ["World"], "selectedEntityColors": {"World": "#18470f"}} | {"id": 194, "map": {"time": 2025, "colorScale": {"baseColorScheme": "RdYlBu", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#543005", "#8c510a", "#bf812d", "#dfc27d", "#f6e8c3", "#c7eae5", "#80cdc1", "#35978f", "#01665e", "#003c30", "#", "#"], "customNumericLabels": ["", "", "", "", "", "", "", ""], "customNumericValues": [-6, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5], "customCategoryColors": {"No data": "#adacac"}, "customNumericColorsActive": true}, "columnSlug": "950928", "timeTolerance": 5}, "slug": "population-growth-rates", "title": "Population growth rate", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 41, "subtitle": "[Population growth rate](#dod:population-growth-rate) takes births, deaths and migration into account. Future projections are based on the [UN medium scenario](#dod:un-projection-scenarios).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/population-growth/", "dimensions": [{"display": {"name": "", "unit": "%", "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 950924}, {"display": {"name": "Population growth rate (%)", "unit": "%", "isProjection": true, "includeInTable": true, "numDecimalPlaces": 2}, "property": "y", "variableId": 950928}], "isPublished": true, "variantName": "with UN projections", "addCountryMode": "change-country", "selectedEntityNames": ["World"], "selectedEntityColors": {"World": "#18470f"}} | population-growth-rates | LineChart | 2016-03-12 00:26:26 | 2025-06-20 10:32:57 | mjXkkIIRoLqCa91T1CVAZA== |
43 | 43 | 0191b6c7-3693-736c-80e1-a041c4c51b94 | {"id": 197, "map": {"time": 2017, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "timeTolerance": 1}, "slug": "child-mortality-by-income-level-of-country", "title": "Child mortality by income level of country", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 20, "subtitle": "The estimated share of newborns who die before reaching the age of five.", "originUrl": "https://ourworldindata.org/child-mortality/", "dimensions": [{"property": "y", "variableId": 1027772}], "isPublished": true, "addCountryMode": "disabled", "invertColorScheme": true, "selectedEntityNames": ["Low-income countries", "High-income countries", "Lower-middle-income countries", "Upper-middle-income countries"], "hideAnnotationFieldsInTitle": {"time": true}} | {"id": 197, "map": {"time": 2017, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericColors": ["#000", "#c00", "#0c0", "#00c", "#c0c"]}, "timeTolerance": 1}, "slug": "child-mortality-by-income-level-of-country", "title": "Child mortality by income level of country", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 20, "subtitle": "The estimated share of newborns who die before reaching the age of five.", "originUrl": "https://ourworldindata.org/child-mortality/", "dimensions": [{"property": "y", "variableId": 1027772}], "isPublished": true, "addCountryMode": "disabled", "invertColorScheme": true, "selectedEntityNames": ["Low-income countries", "High-income countries", "Lower-middle-income countries", "Upper-middle-income countries"], "hideAnnotationFieldsInTitle": {"time": true}} | child-mortality-by-income-level-of-country | LineChart | 2016-03-16 18:13:03 | 2025-04-28 14:25:46 | UsJ35ZJmdLycCdpX6P3WFw== |
44 | 44 | 0191b6c7-3695-7ae6-9a17-ff9a867adafc | {"id": 205, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "276", "timeTolerance": 1}, "slug": "us-healthcare-expenditure", "title": "US healthcare expenditure", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 3, "subtitle": "National health expenditures expressed as a percent of GDP.", "originUrl": "https://ourworldindata.org/financing-healthcare/", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "US Health Expenditure, Private", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 277}, {"display": {"name": "US Health Expenditure, Public", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 276}], "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["United States"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 205, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "276", "timeTolerance": 1}, "slug": "us-healthcare-expenditure", "title": "US healthcare expenditure", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 3, "subtitle": "National health expenditures expressed as a percent of GDP.", "originUrl": "https://ourworldindata.org/financing-healthcare/", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "US Health Expenditure, Private", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 277}, {"display": {"name": "US Health Expenditure, Public", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 276}], "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["United States"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | us-healthcare-expenditure | StackedArea | 2016-04-05 23:51:05 | 2024-09-05 09:00:28 | IgLD5aUFAwUD/v3kQlxTEg== |
45 | 45 | 0191b6c7-3696-748e-a0d2-7155d72e1c46 | {"id": 206, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericValues": [0]}, "columnSlug": "279", "timeTolerance": 1}, "slug": "health-insurance-coverage-in-the-us", "title": "Health insurance coverage in the United States", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 5, "subtitle": "Health insurance coverage in the United States by type of plan. Insurance plans are not mutually exclusive.", "originUrl": "https://ourworldindata.org/financing-healthcare/", "dimensions": [{"display": {"name": "Government plan", "unit": "%", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 280}, {"display": {"name": "Private plan", "unit": "%", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 281}, {"display": {"name": "Any plan", "unit": "%", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 279}], "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["United States"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 206, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericValues": [0]}, "columnSlug": "279", "timeTolerance": 1}, "slug": "health-insurance-coverage-in-the-us", "title": "Health insurance coverage in the United States", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 5, "subtitle": "Health insurance coverage in the United States by type of plan. Insurance plans are not mutually exclusive.", "originUrl": "https://ourworldindata.org/financing-healthcare/", "dimensions": [{"display": {"name": "Government plan", "unit": "%", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 280}, {"display": {"name": "Private plan", "unit": "%", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 281}, {"display": {"name": "Any plan", "unit": "%", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 279}], "isPublished": true, "addCountryMode": "disabled", "selectedEntityNames": ["United States"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | health-insurance-coverage-in-the-us | LineChart | 2016-04-06 05:21:10 | 2024-09-05 09:00:28 | OaOHf9KGIfc+C51OHkNSpg== |
46 | 46 | 0191b6c7-3698-7efa-b0a3-787996961c46 | {"id": 207, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": [null, null, null, null, null, null], "customNumericValues": [0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25]}, "timeTolerance": 5}, "tab": "map", "slug": "total-healthcare-expenditure-gdp", "title": "Total healthcare spending as a share of GDP", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 2000, "version": 19, "subtitle": "Total healthcare expenditure as the share of national [gross domestic product](#dod:gdp) (GDP).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/financing-healthcare/", "dimensions": [{"display": {"unit": "% of GDP", "includeInTable": true}, "property": "y", "variableId": 1045260}], "isPublished": true, "selectedEntityNames": ["China", "India", "Brazil", "United States", "United Kingdom", "France", "Japan", "Nigeria"]} | {"id": 207, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": [null, null, null, null, null, null], "customNumericValues": [0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25]}, "timeTolerance": 5}, "tab": "map", "slug": "total-healthcare-expenditure-gdp", "title": "Total healthcare spending as a share of GDP", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 2000, "version": 19, "subtitle": "Total healthcare expenditure as the share of national [gross domestic product](#dod:gdp) (GDP).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/financing-healthcare/", "dimensions": [{"display": {"unit": "% of GDP", "includeInTable": true}, "property": "y", "variableId": 1045260}], "isPublished": true, "selectedEntityNames": ["China", "India", "Brazil", "United States", "United Kingdom", "France", "Japan", "Nigeria"]} | total-healthcare-expenditure-gdp | LineChart | 2016-04-06 22:44:51 | 2025-06-06 08:33:24 | n2gVppmNpzlBQ2t1CdxSRQ== |
47 | 47 | 0191b6c7-369a-75d4-80ef-faadd8a80e04 | {"id": 209, "map": {"colorScale": {"baseColorScheme": "YlGnBu", "binningStrategy": "manual", "legendDescription": "Share of Public Expenditure on Healthcare", "customNumericColors": [null, null, null], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}, "timeTolerance": 3}, "tab": "map", "note": "Public sources include internal transfers and grants, subsidies to voluntary health insurance, as well as compulsory prepayment and social health insurance contributions. ", "slug": "share-of-public-expenditure-on-healthcare-by-country", "title": "Public spending on healthcare as percent of total healthcare spending", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 16, "subtitle": "Share of current health expenditures funded from domestic public sources for health.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/financing-healthcare/", "dimensions": [{"display": {"unit": "% of total health spending", "shortUnit": "%", "tolerance": 1, "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 1008744}], "isPublished": true, "selectedEntityNames": ["United Kingdom", "China", "Colombia", "Switzerland", "India", "Nigeria", "United States"]} | {"id": 209, "map": {"colorScale": {"baseColorScheme": "YlGnBu", "binningStrategy": "manual", "legendDescription": "Share of Public Expenditure on Healthcare", "customNumericColors": [null, null, null], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}, "timeTolerance": 3}, "tab": "map", "note": "Public sources include internal transfers and grants, subsidies to voluntary health insurance, as well as compulsory prepayment and social health insurance contributions. ", "slug": "share-of-public-expenditure-on-healthcare-by-country", "title": "Public spending on healthcare as percent of total healthcare spending", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 16, "subtitle": "Share of current health expenditures funded from domestic public sources for health.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/financing-healthcare/", "dimensions": [{"display": {"unit": "% of total health spending", "shortUnit": "%", "tolerance": 1, "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 1008744}], "isPublished": true, "selectedEntityNames": ["United Kingdom", "China", "Colombia", "Switzerland", "India", "Nigeria", "United States"]} | share-of-public-expenditure-on-healthcare-by-country | LineChart | 2016-04-06 23:54:33 | 2025-06-06 09:49:57 | uncZbSs63Bw58a56WUAQsA== |
48 | 48 | 0191b6c7-369c-722b-b0c8-c7861be7f81c | {"id": 210, "map": {"colorScale": {"baseColorScheme": "Oranges", "binningStrategy": "manual", "legendDescription": "Out-of-Pocket Expenditure (% Total)", "customNumericColors": [null], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}, "timeTolerance": 1}, "tab": "map", "note": "\"Out-of-pocket\" refers to direct payments made by households to healthcare providers.", "slug": "share-of-out-of-pocket-expenditure-on-healthcare", "title": "Share of out-of-pocket spending on healthcare", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 12, "subtitle": "Out-of-pocket spending on healthcare as percent of total current healthcare expenditure.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/financing-healthcare/", "dimensions": [{"property": "y", "variableId": 1008749}], "isPublished": true, "selectedEntityNames": ["World"]} | {"id": 210, "map": {"colorScale": {"baseColorScheme": "Oranges", "binningStrategy": "manual", "legendDescription": "Out-of-Pocket Expenditure (% Total)", "customNumericColors": [null], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}, "timeTolerance": 1}, "tab": "map", "note": "\"Out-of-pocket\" refers to direct payments made by households to healthcare providers.", "slug": "share-of-out-of-pocket-expenditure-on-healthcare", "title": "Share of out-of-pocket spending on healthcare", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 12, "subtitle": "Out-of-pocket spending on healthcare as percent of total current healthcare expenditure.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/financing-healthcare/", "dimensions": [{"property": "y", "variableId": 1008749}], "isPublished": true, "selectedEntityNames": ["World"]} | share-of-out-of-pocket-expenditure-on-healthcare | LineChart | 2016-04-07 02:15:45 | 2025-06-06 09:49:07 | An66R8oHGEus7xJnUgFpvg== |
49 | 49 | 0191b6c7-369d-7a72-95ae-1b73bbc6c70a | {"id": 212, "map": {"time": 1990, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "note": "GDP per capita is expressed in [international-$](#dod:int_dollar_abbreviation) at 2021 prices.", "slug": "healthcare-expenditure-vs-gdp", "title": "Healthcare spending vs. GDP per capita", "xAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "yAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 28, "subtitle": "Current healthcare expenditure per capita is adjusted for differences in living costs between countries but not for inflation. [GDP](#dod:gdp) per capita is adjusted for inflation and differences in living costs between countries.", "originUrl": "https://ourworldindata.org/financing-healthcare", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Current health expenditure per capita (int-$)", "tolerance": 1, "includeInTable": true}, "property": "y", "variableId": 1008740}, {"property": "x", "variableId": 1008370}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "matchingEntitiesOnly": true} | {"id": 212, "map": {"time": 1990, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "note": "GDP per capita is expressed in [international-$](#dod:int_dollar_abbreviation) at 2021 prices.", "slug": "healthcare-expenditure-vs-gdp", "title": "Healthcare spending vs. GDP per capita", "xAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "yAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 28, "subtitle": "Current healthcare expenditure per capita is adjusted for differences in living costs between countries but not for inflation. [GDP](#dod:gdp) per capita is adjusted for inflation and differences in living costs between countries.", "originUrl": "https://ourworldindata.org/financing-healthcare", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Current health expenditure per capita (int-$)", "tolerance": 1, "includeInTable": true}, "property": "y", "variableId": 1008740}, {"property": "x", "variableId": 1008370}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "matchingEntitiesOnly": true} | healthcare-expenditure-vs-gdp | ScatterPlot | 2016-04-12 04:38:24 | 2025-06-11 08:51:48 | 5lxTwln+iNkht05SUv+Cdg== |
50 | 50 | 0191b6c7-369e-7639-b88b-7e331d6fea24 | {"id": 213, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "life-expectancy-vs-healthcare-expenditure", "title": "Life expectancy vs. health spending", "xAxis": {"scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 34, "subtitle": "The [period life expectancy](#dod:period-life-expectancy) at birth, in a given year. Health expenditure includes all financing schemes and covers all aspects of healthcare. This data is adjusted for differences in living costs between countries.", "originUrl": "https://ourworldindata.org/financing-healthcare", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Life expectancy at birth", "unit": "years", "shortUnit": "years", "tolerance": 1, "includeInTable": true}, "property": "y", "variableId": 950927}, {"display": {"name": "Health expenditure per capita, PPP", "tolerance": 1, "includeInTable": true, "numDecimalPlaces": 0}, "property": "x", "variableId": 1008740}, {"display": {"name": "Population", "unit": "persons", "includeInTable": true}, "property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "variantName": "World Bank", "hideRelativeToggle": false, "matchingEntitiesOnly": true} | {"id": 213, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "life-expectancy-vs-healthcare-expenditure", "title": "Life expectancy vs. health spending", "xAxis": {"scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 34, "subtitle": "The [period life expectancy](#dod:period-life-expectancy) at birth, in a given year. Health expenditure includes all financing schemes and covers all aspects of healthcare. This data is adjusted for differences in living costs between countries.", "originUrl": "https://ourworldindata.org/financing-healthcare", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Life expectancy at birth", "unit": "years", "shortUnit": "years", "tolerance": 1, "includeInTable": true}, "property": "y", "variableId": 950927}, {"display": {"name": "Health expenditure per capita, PPP", "tolerance": 1, "includeInTable": true, "numDecimalPlaces": 0}, "property": "x", "variableId": 1008740}, {"display": {"name": "Population", "unit": "persons", "includeInTable": true}, "property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "variantName": "World Bank", "hideRelativeToggle": false, "matchingEntitiesOnly": true} | life-expectancy-vs-healthcare-expenditure | ScatterPlot | 2016-04-13 01:53:06 | 2025-06-06 09:43:32 | jILF9+IhuZqdNfgovcapcQ== |
51 | 51 | 0191b6c7-36a0-756c-9cfe-bf995f3a40cc | {"id": 214, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "child-mortality-vs-health-expenditure", "title": "Child mortality vs. health spending", "xAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "yAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 35, "subtitle": "Healthcare expenditure per capita is measured in current international-$, which adjusts for price differences between countries. Under-five mortality is the share of newborns who die before reaching the age of five.", "originUrl": "https://ourworldindata.org/health-meta/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Child mortality", "unit": "deaths per 100 live births", "tolerance": 10, "includeInTable": true}, "property": "y", "variableId": 1027772}, {"display": {"name": "Current health expenditure per capita, PPP", "unit": "current international $", "tolerance": 10, "includeInTable": true, "conversionFactor": 1}, "property": "x", "variableId": 1008740}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "variantName": "", "hideRelativeToggle": false, "compareEndPointsOnly": true, "matchingEntitiesOnly": true} | {"id": 214, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "child-mortality-vs-health-expenditure", "title": "Child mortality vs. health spending", "xAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "yAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 35, "subtitle": "Healthcare expenditure per capita is measured in current international-$, which adjusts for price differences between countries. Under-five mortality is the share of newborns who die before reaching the age of five.", "originUrl": "https://ourworldindata.org/health-meta/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Child mortality", "unit": "deaths per 100 live births", "tolerance": 10, "includeInTable": true}, "property": "y", "variableId": 1027772}, {"display": {"name": "Current health expenditure per capita, PPP", "unit": "current international $", "tolerance": 10, "includeInTable": true, "conversionFactor": 1}, "property": "x", "variableId": 1008740}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "variantName": "", "hideRelativeToggle": false, "compareEndPointsOnly": true, "matchingEntitiesOnly": true} | child-mortality-vs-health-expenditure | ScatterPlot | 2016-04-13 03:48:46 | 2025-06-06 08:58:05 | /DQqyomVJn1Slc5CDYO8yw== |
52 | 52 | 0191b6c7-36a3-7d6a-b126-8a58b900fa0c | {"id": 216, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "291", "timeTolerance": 1}, "slug": "global-malaria-deaths-by-world-region", "title": "Malaria deaths by world region", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 26, "subtitle": "Estimated annual number of deaths from [malaria](#dod:malaria).", "originUrl": "https://ourworldindata.org/malaria", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Deaths from malaria", "unit": "deaths", "color": "#4F94CD", "shortUnit": "", "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 347639}], "entityType": "region", "sourceDesc": "WHO, Global Malaria Programme (2021)", "isPublished": true, "variantName": "WHO", "addCountryMode": "disabled", "baseColorScheme": "owid-distinct", "entityTypePlural": "regions", "hideRelativeToggle": false, "selectedEntityNames": ["Europe", "Americas", "Western Pacific", "Eastern Mediterranean", "South-East Asia", "Africa"], "selectedEntityColors": {"Africa": "#a2559c", "Europe": "#4c6a9c", "Americas": "#e56e5a", "South-East Asia": "#3b8e1d", "Western Pacific": "#9a5129", "Eastern Mediterranean": "#bc8e5a"}, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 216, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "291", "timeTolerance": 1}, "slug": "global-malaria-deaths-by-world-region", "title": "Malaria deaths by world region", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 26, "subtitle": "Estimated annual number of deaths from [malaria](#dod:malaria).", "originUrl": "https://ourworldindata.org/malaria", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Deaths from malaria", "unit": "deaths", "color": "#4F94CD", "shortUnit": "", "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 347639}], "entityType": "region", "sourceDesc": "WHO, Global Malaria Programme (2021)", "isPublished": true, "variantName": "WHO", "addCountryMode": "disabled", "baseColorScheme": "owid-distinct", "entityTypePlural": "regions", "hideRelativeToggle": false, "selectedEntityNames": ["Europe", "Americas", "Western Pacific", "Eastern Mediterranean", "South-East Asia", "Africa"], "selectedEntityColors": {"Africa": "#a2559c", "Europe": "#4c6a9c", "Americas": "#e56e5a", "South-East Asia": "#3b8e1d", "Western Pacific": "#9a5129", "Eastern Mediterranean": "#bc8e5a"}, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | global-malaria-deaths-by-world-region | StackedArea | 2016-04-14 22:13:26 | 2024-09-05 09:00:28 | TGYFQ93GV+Vb9cMg5WCHKA== |
53 | 53 | 0191b6c7-36a5-7204-acc2-08d86a45e24d | {"id": 225, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "GDP per capita, PPP (in constant 2011 int-$)", "customNumericValues": [0, 1000, 2000, 5000, 10000, 20000, 50000, 100000]}}, "tab": "map", "note": "This data is expressed in [international-$](#dod:int_dollar_abbreviation) at 2021 prices.", "slug": "gdp-per-capita-worldbank", "title": "GDP per capita", "yAxis": {"min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 45, "subtitle": "This data is adjusted for inflation and for differences in living costs between countries.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/economic-growth", "chartTypes": ["LineChart", "SlopeChart"], "dimensions": [{"property": "y", "variableId": 1008370}], "isPublished": true, "variantName": "World Bank, constant international-$", "hideRelativeToggle": false, "selectedEntityNames": ["United States", "Germany", "United Kingdom", "France", "South Korea", "Japan", "China", "India"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 225, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "GDP per capita, PPP (in constant 2011 int-$)", "customNumericValues": [0, 1000, 2000, 5000, 10000, 20000, 50000, 100000]}}, "tab": "map", "note": "This data is expressed in [international-$](#dod:int_dollar_abbreviation) at 2021 prices.", "slug": "gdp-per-capita-worldbank", "title": "GDP per capita", "yAxis": {"min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 45, "subtitle": "This data is adjusted for inflation and for differences in living costs between countries.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/economic-growth", "chartTypes": ["LineChart", "SlopeChart"], "dimensions": [{"property": "y", "variableId": 1008370}], "isPublished": true, "variantName": "World Bank, constant international-$", "hideRelativeToggle": false, "selectedEntityNames": ["United States", "Germany", "United Kingdom", "France", "South Korea", "Japan", "China", "India"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | gdp-per-capita-worldbank | LineChart | 2016-05-03 21:44:14 | 2025-02-05 16:05:32 | 4/FRHSRH+OfN5RdOl0vSRA== |
54 | 54 | 0191b6c7-36a7-7ff0-a15f-a97ca0a8f3e6 | {"id": 226, "map": {"colorScale": {"baseColorScheme": "BuPu", "binningStrategy": "manual", "legendDescription": "Children per woman", "customNumericColors": [null, null, null, null, null, null, null, null], "customNumericValues": [0, 1, 2, 3, 4, 5, 6, 7, 8]}, "columnSlug": "104427", "timeTolerance": 5}, "note": "", "slug": "children-born-per-woman", "title": "Total fertility rate: births per woman", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 50, "subtitle": "The [total fertility rate](#dod:fertility-rate) summarizes the total number of births a woman would have, if she experienced the birth rates seen in women of each age group in one particular year across her childbearing years.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/fertility-rate", "dimensions": [{"display": {"name": "Total fertility rate", "shortUnit": "births", "includeInTable": true}, "property": "y", "variableId": 1002450}], "isPublished": true, "variantName": "Long-run", "selectedEntityNames": ["World", "United States", "United Kingdom", "Russia", "Germany", "Japan", "India"], "hideAnnotationFieldsInTitle": {"time": true}} | {"id": 226, "map": {"colorScale": {"baseColorScheme": "BuPu", "binningStrategy": "manual", "legendDescription": "Children per woman", "customNumericColors": [null, null, null, null, null, null, null, null], "customNumericValues": [0, 1, 2, 3, 4, 5, 6, 7, 8]}, "columnSlug": "104427", "timeTolerance": 5}, "note": "", "slug": "children-born-per-woman", "title": "Total fertility rate: births per woman", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 50, "subtitle": "The [total fertility rate](#dod:fertility-rate) summarizes the total number of births a woman would have, if she experienced the birth rates seen in women of each age group in one particular year across her childbearing years.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/fertility-rate", "dimensions": [{"display": {"name": "Total fertility rate", "shortUnit": "births", "includeInTable": true}, "property": "y", "variableId": 1002450}], "isPublished": true, "variantName": "Long-run", "selectedEntityNames": ["World", "United States", "United Kingdom", "Russia", "Germany", "Japan", "India"], "hideAnnotationFieldsInTitle": {"time": true}} | children-born-per-woman | LineChart | 2016-05-04 04:47:17 | 2025-02-24 08:56:35 | /5jAtXtEhn6Ty0JtosMiGA== |
55 | 55 | 0191b6c7-36a8-7963-ab7a-495a93e62edc | {"id": 228, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "312", "timeTolerance": 1}, "slug": "world-population-comparison-historical-sources", "title": "World population, comparison of different historical sources", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 1, "version": 12, "originUrl": "https://ourworldindata.org/population-growth/", "dimensions": [{"display": {"includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 736810}], "entityType": "source", "isPublished": true, "entityTypePlural": "sources", "selectedEntityNames": ["Maddison (1991)", "Durand, upper estimate (1974)", "Thomlinson, upper estimate (1975)", "Durand, lower estimate (1974)", "Tuve (1976)", "McEvedy and Jones (1978)"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 228, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "312", "timeTolerance": 1}, "slug": "world-population-comparison-historical-sources", "title": "World population, comparison of different historical sources", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 1, "version": 12, "originUrl": "https://ourworldindata.org/population-growth/", "dimensions": [{"display": {"includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 736810}], "entityType": "source", "isPublished": true, "entityTypePlural": "sources", "selectedEntityNames": ["Maddison (1991)", "Durand, upper estimate (1974)", "Thomlinson, upper estimate (1975)", "Durand, lower estimate (1974)", "Tuve (1976)", "McEvedy and Jones (1978)"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | world-population-comparison-historical-sources | LineChart | 2016-05-19 21:43:22 | 2024-12-23 16:27:48 | VME2Q+t3e04LQBff2R0GlA== |
56 | 56 | 0191b6c7-36a9-75d2-80d0-d657b19bea8a | {"id": 230, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "Children per woman", "customNumericColors": ["#8dd3c7", "#ffffb3", "#bebada", "#fb8072", "#80b1d3"], "customNumericValues": [0, 1, 2, 3, 4, 5, 6, 7, 8]}, "columnSlug": "520469"}, "tab": "map", "slug": "children-per-woman-un", "title": "Fertility rate: births per woman", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 38, "subtitle": "The [total fertility rate](#dod:fertility-rate) summarizes the total number of births a woman would have, if she experienced the birth rates seen in women of each age group in one particular year across her childbearing years.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/fertility-rate", "chartTypes": ["LineChart", "SlopeChart"], "dimensions": [{"display": {"name": "Fertility rate", "unit": "live births per woman", "shortUnit": "births", "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 950920}], "isPublished": true, "variantName": "UN", "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 230, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "Children per woman", "customNumericColors": ["#8dd3c7", "#ffffb3", "#bebada", "#fb8072", "#80b1d3"], "customNumericValues": [0, 1, 2, 3, 4, 5, 6, 7, 8]}, "columnSlug": "520469"}, "tab": "map", "slug": "children-per-woman-un", "title": "Fertility rate: births per woman", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 38, "subtitle": "The [total fertility rate](#dod:fertility-rate) summarizes the total number of births a woman would have, if she experienced the birth rates seen in women of each age group in one particular year across her childbearing years.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/fertility-rate", "chartTypes": ["LineChart", "SlopeChart"], "dimensions": [{"display": {"name": "Fertility rate", "unit": "live births per woman", "shortUnit": "births", "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 950920}], "isPublished": true, "variantName": "UN", "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | children-per-woman-un | LineChart | 2016-05-20 15:09:33 | 2025-01-16 14:18:23 | beEqceB8yIV7o0QSwOXqLA== |
57 | 57 | 0191b6c7-36ab-766f-a2c8-0e4352f4f5ca | {"id": 231, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "children-per-woman-vs-human-development-index", "title": "Fertility rate vs. Human Development Index", "xAxis": {"min": 0.75}, "yAxis": {"max": 4, "min": 1}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 34, "subtitle": "The [total fertility rate](#dod:fertility-rate), in one particular year. The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable, and a decent standard of living.", "originUrl": "https://ourworldindata.org/fertility-rate", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Fertility rate", "unit": "live births per woman"}, "property": "y", "variableId": 950920}, {"display": {"name": "Human Development Index"}, "property": "x", "variableId": 1032439}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "compareEndPointsOnly": true, "matchingEntitiesOnly": true} | {"id": 231, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "children-per-woman-vs-human-development-index", "title": "Fertility rate vs. Human Development Index", "xAxis": {"min": 0.75}, "yAxis": {"max": 4, "min": 1}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 34, "subtitle": "The [total fertility rate](#dod:fertility-rate), in one particular year. The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable, and a decent standard of living.", "originUrl": "https://ourworldindata.org/fertility-rate", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Fertility rate", "unit": "live births per woman"}, "property": "y", "variableId": 950920}, {"display": {"name": "Human Development Index"}, "property": "x", "variableId": 1032439}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "compareEndPointsOnly": true, "matchingEntitiesOnly": true} | children-per-woman-vs-human-development-index | ScatterPlot | 2016-05-20 15:14:37 | 2025-05-19 15:00:33 | 8gB2zSVvTVrUH68fBQ2Fyg== |
58 | 58 | 0191b6c7-36ac-73a6-a0cd-ef42f566d5d0 | {"id": 232, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "world-population-level-education", "title": "Population by level of education", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 25, "subtitle": "Shown is the medium (SSP2) projection by the Wittgenstein Centre for Demography and Global Human Capital. The authors of this projection describe it as their \"middle of the road scenario that can also be seen as the most likely path\".", "originUrl": "https://ourworldindata.org/population-growth/", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Post Secondary", "unit": "people", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003940}, {"display": {"name": "Upper Secondary", "unit": "people", "tolerance": 5, "includeInTable": true, "conversionFactor": 1, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003948}, {"display": {"name": "Lower Secondary", "unit": "people", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003936}, {"display": {"name": "Primary", "unit": "people", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003942}, {"display": {"name": "Incomplete Primary", "unit": "people", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003934}, {"display": {"name": "No Education", "unit": "people", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003938}, {"display": {"name": "Under-15s", "unit": "people", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003946}], "isPublished": true, "variantName": "with projections", "addCountryMode": "change-country", "baseColorScheme": "OwidCategoricalC", "hideRelativeToggle": false, "selectedEntity… | {"id": 232, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "world-population-level-education", "title": "Population by level of education", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 25, "subtitle": "Shown is the medium (SSP2) projection by the Wittgenstein Centre for Demography and Global Human Capital. The authors of this projection describe it as their \"middle of the road scenario that can also be seen as the most likely path\".", "originUrl": "https://ourworldindata.org/population-growth/", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Post Secondary", "unit": "people", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003940}, {"display": {"name": "Upper Secondary", "unit": "people", "tolerance": 5, "includeInTable": true, "conversionFactor": 1, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003948}, {"display": {"name": "Lower Secondary", "unit": "people", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003936}, {"display": {"name": "Primary", "unit": "people", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003942}, {"display": {"name": "Incomplete Primary", "unit": "people", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003934}, {"display": {"name": "No Education", "unit": "people", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003938}, {"display": {"name": "Under-15s", "unit": "people", "tolerance": 5, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1003946}], "isPublished": true, "variantName": "with projections", "addCountryMode": "change-country", "baseColorScheme": "OwidCategoricalC", "hideRelativeToggle": false, "selectedEntity… | world-population-level-education | StackedArea | 2016-05-21 00:12:46 | 2024-12-11 17:38:52 | WCkjN+NErJWur3gL4o+q7Q== |
59 | 59 | 0191b6c7-36ae-7c4e-b917-10f080ac739b | {"id": 235, "map": {"colorScale": {"baseColorScheme": "YlOrRd", "binningStrategy": "manual", "legendDescription": "Children that died before 5 years of age per woman", "customNumericValues": [0, 0.1, 0.3, 0.5, 1, 3, 5]}, "columnSlug": "104668", "timeTolerance": 1}, "slug": "children-died-before-five-per-woman", "title": "Number of child deaths per woman", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 1800, "version": 19, "subtitle": "The estimated number of children under the age of five who died, given as a rate per woman.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/child-mortality", "dimensions": [{"property": "y", "variableId": 813867}], "isPublished": true, "selectedEntityNames": ["United States", "China", "India", "France", "Nigeria", "Philippines", "Brazil", "Kenya"], "hideAnnotationFieldsInTitle": {"time": true}} | {"id": 235, "map": {"colorScale": {"baseColorScheme": "YlOrRd", "binningStrategy": "manual", "legendDescription": "Children that died before 5 years of age per woman", "customNumericValues": [0, 0.1, 0.3, 0.5, 1, 3, 5]}, "columnSlug": "104668", "timeTolerance": 1}, "slug": "children-died-before-five-per-woman", "title": "Number of child deaths per woman", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 1800, "version": 19, "subtitle": "The estimated number of children under the age of five who died, given as a rate per woman.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/child-mortality", "dimensions": [{"property": "y", "variableId": 813867}], "isPublished": true, "selectedEntityNames": ["United States", "China", "India", "France", "Nigeria", "Philippines", "Brazil", "Kenya"], "hideAnnotationFieldsInTitle": {"time": true}} | children-died-before-five-per-woman | LineChart | 2016-05-22 15:09:50 | 2024-09-19 10:26:45 | OA866fGSmc0ym0hsIaDtuA== |
60 | 60 | 0191b6c7-36af-7622-8472-9192e87187b4 | {"id": 236, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "323", "timeTolerance": 1}, "note": "See [this link](https://ourworldindata.org/extreme-history-methods) for the strengths and limitations of this data and how historians arrive at these estimates.", "slug": "world-population-in-extreme-poverty-absolute", "title": "World population living in extreme poverty", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 20, "subtitle": "Extreme poverty is defined as living on less than 1.90 international-$ per day.\nInternational-$ are adjusted for price differences between countries and for price changes over time (inflation).", "originUrl": "https://ourworldindata.org/poverty", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Number of people not in extreme poverty", "unit": "people", "color": "#046c38", "shortUnit": "", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 324}, {"display": {"name": "Number of people living in extreme poverty", "unit": "people", "color": "#760d17", "shortUnit": "", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 323}], "sourceDesc": "Ravallion (2016) updated with World Bank (2019)", "isPublished": true, "variantName": "World Bank & Bourguignon and Morrisson", "addCountryMode": "disabled", "relatedQuestions": [{"url": "https://ourworldindata.org/extreme-history-methods", "text": "How do we know the history of extreme poverty?"}], "hideRelativeToggle": false, "selectedEntityNames": ["World"], "selectedEntityColors": {"World": "#760d17"}, "hideAnnotationFieldsInTitle": {"entity": true}} | {"id": 236, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "323", "timeTolerance": 1}, "note": "See [this link](https://ourworldindata.org/extreme-history-methods) for the strengths and limitations of this data and how historians arrive at these estimates.", "slug": "world-population-in-extreme-poverty-absolute", "title": "World population living in extreme poverty", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 20, "subtitle": "Extreme poverty is defined as living on less than 1.90 international-$ per day.\nInternational-$ are adjusted for price differences between countries and for price changes over time (inflation).", "originUrl": "https://ourworldindata.org/poverty", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Number of people not in extreme poverty", "unit": "people", "color": "#046c38", "shortUnit": "", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 324}, {"display": {"name": "Number of people living in extreme poverty", "unit": "people", "color": "#760d17", "shortUnit": "", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 323}], "sourceDesc": "Ravallion (2016) updated with World Bank (2019)", "isPublished": true, "variantName": "World Bank & Bourguignon and Morrisson", "addCountryMode": "disabled", "relatedQuestions": [{"url": "https://ourworldindata.org/extreme-history-methods", "text": "How do we know the history of extreme poverty?"}], "hideRelativeToggle": false, "selectedEntityNames": ["World"], "selectedEntityColors": {"World": "#760d17"}, "hideAnnotationFieldsInTitle": {"entity": true}} | world-population-in-extreme-poverty-absolute | StackedArea | 2016-05-23 18:41:55 | 2025-07-10 18:17:34 | rorokvCLaUhLc4VCR4WOpQ== |
61 | 61 | 0191b6c7-36b0-70c7-8e87-b53524a35e48 | {"id": 241, "map": {"colorScale": {"baseColorScheme": "YlGnBu", "binningStrategy": "manual", "legendDescription": "Output in 2015 US per hour worked", "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}, "timeTolerance": 5}, "tab": "map", "note": "This data is expressed in [international-$](#dod:int_dollar_abbreviation) at 2017 prices per hour.", "slug": "labor-productivity-per-hour-pennworldtable", "title": "Productivity: output per hour worked", "yAxis": {"max": 0, "min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 33, "subtitle": "Productivity is measured as gross domestic product (GDP) per hour of work. This data is adjusted for inflation and differences in living costs between countries.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/economic-growth", "dimensions": [{"display": {"tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 539764}], "isPublished": true, "hideRelativeToggle": false, "selectedEntityNames": ["United States", "China", "India", "Japan", "Germany", "Russia", "Brazil", "United Kingdom", "France", "Mexico"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 241, "map": {"colorScale": {"baseColorScheme": "YlGnBu", "binningStrategy": "manual", "legendDescription": "Output in 2015 US per hour worked", "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}, "timeTolerance": 5}, "tab": "map", "note": "This data is expressed in [international-$](#dod:int_dollar_abbreviation) at 2017 prices per hour.", "slug": "labor-productivity-per-hour-pennworldtable", "title": "Productivity: output per hour worked", "yAxis": {"max": 0, "min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 33, "subtitle": "Productivity is measured as gross domestic product (GDP) per hour of work. This data is adjusted for inflation and differences in living costs between countries.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/economic-growth", "dimensions": [{"display": {"tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 539764}], "isPublished": true, "hideRelativeToggle": false, "selectedEntityNames": ["United States", "China", "India", "Japan", "Germany", "Russia", "Brazil", "United Kingdom", "France", "Mexico"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | labor-productivity-per-hour-pennworldtable | LineChart | 2016-05-27 21:09:27 | 2025-01-30 18:23:13 | bQPAnRl+WhFOiCdwGONleA== |
62 | 62 | 0191b6c7-36b2-734c-8980-2997f37c3c36 | {"id": 245, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericValues": [0]}, "timeTolerance": 1}, "note": "This data is expressed in [international-$](#dod:int_dollar_abbreviation) at 2017 prices, using multiple benchmark years to adjust for differences in the cost of living between countries over time.", "slug": "productivity-vs-annual-hours-worked", "title": "Annual working hours vs. labor productivity", "xAxis": {"min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 46, "subtitle": "Labor productivity is measured as GDP per hour of work. This data is adjusted for inflation and for differences in living costs between countries.", "originUrl": "https://ourworldindata.org/working-hours", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Annual working hours per worker", "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 539739}, {"property": "x", "variableId": 539764}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "relatedQuestions": [{"url": "https://ourworldindata.org/rich-poor-working-hours", "text": "Do workers in richer countries work longer hours?"}], "hideRelativeToggle": false, "excludedEntityNames": ["Ireland"]} | {"id": 245, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": "", "customNumericValues": [0]}, "timeTolerance": 1}, "note": "This data is expressed in [international-$](#dod:int_dollar_abbreviation) at 2017 prices, using multiple benchmark years to adjust for differences in the cost of living between countries over time.", "slug": "productivity-vs-annual-hours-worked", "title": "Annual working hours vs. labor productivity", "xAxis": {"min": 0, "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 46, "subtitle": "Labor productivity is measured as GDP per hour of work. This data is adjusted for inflation and for differences in living costs between countries.", "originUrl": "https://ourworldindata.org/working-hours", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Annual working hours per worker", "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 539739}, {"property": "x", "variableId": 539764}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "relatedQuestions": [{"url": "https://ourworldindata.org/rich-poor-working-hours", "text": "Do workers in richer countries work longer hours?"}], "hideRelativeToggle": false, "excludedEntityNames": ["Ireland"]} | productivity-vs-annual-hours-worked | ScatterPlot | 2016-05-27 23:14:04 | 2025-01-30 18:23:14 | mWIsB0UDmqGDQmu9+NKFKg== |
63 | 63 | 0191b6c7-36b3-7dcc-b540-23871809fd01 | {"id": 246, "map": {"colorScale": {"baseColorScheme": "YlOrRd", "binningStrategy": "manual", "legendDescription": "Weekly work hours", "customNumericValues": [35, 40, 45, 50, 55, 60, 65, 70, 75]}, "columnSlug": "348", "timeTolerance": 1}, "slug": "work-hours-per-week", "title": "Weekly working hours", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 8, "subtitle": "Work hours of full-time production workers (male and female) in non-agricultural activities", "hasMapTab": true, "originUrl": "https://ourworldindata.org/working-hours/", "dimensions": [{"display": {"name": "", "unit": "hours per week", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 348}], "isPublished": true, "selectedEntityNames": ["Italy", "Switzerland", "Belgium", "France"]} | {"id": 246, "map": {"colorScale": {"baseColorScheme": "YlOrRd", "binningStrategy": "manual", "legendDescription": "Weekly work hours", "customNumericValues": [35, 40, 45, 50, 55, 60, 65, 70, 75]}, "columnSlug": "348", "timeTolerance": 1}, "slug": "work-hours-per-week", "title": "Weekly working hours", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 8, "subtitle": "Work hours of full-time production workers (male and female) in non-agricultural activities", "hasMapTab": true, "originUrl": "https://ourworldindata.org/working-hours/", "dimensions": [{"display": {"name": "", "unit": "hours per week", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 348}], "isPublished": true, "selectedEntityNames": ["Italy", "Switzerland", "Belgium", "France"]} | work-hours-per-week | LineChart | 2016-05-28 00:01:05 | 2024-09-05 09:00:28 | br+N935lTb4GEiplPFyPxg== |
64 | 64 | 0191b6c7-36b4-78da-88c7-18106262f5f4 | {"id": 249, "map": {"colorScale": {"baseColorScheme": "YlGn", "binningStrategy": "manual", "legendDescription": "Self-assessed Happiness (0-10)", "customNumericLabels": ["", "", "", "", "", "", "", "", "", ""], "customNumericValues": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}, "timeTolerance": 10}, "tab": "map", "slug": "happiness-cantril-ladder", "title": "Self-reported life satisfaction", "yAxis": {"max": 10, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 2003, "version": 31, "subtitle": "Average of survey responses. The survey question asks respondents their current position on a hypothetical [ladder](#dod:cantril-ladder), where the best possible life for them is a 10, and the worst possible life is a 0.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/happiness-and-life-satisfaction/", "dimensions": [{"display": {"tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1025227}], "entityType": "country", "isPublished": true, "hideRelativeToggle": false, "selectedEntityNames": ["World", "Europe", "Asia", "Africa", "South America", "North America", "Oceania"]} | {"id": 249, "map": {"colorScale": {"baseColorScheme": "YlGn", "binningStrategy": "manual", "legendDescription": "Self-assessed Happiness (0-10)", "customNumericLabels": ["", "", "", "", "", "", "", "", "", ""], "customNumericValues": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}, "timeTolerance": 10}, "tab": "map", "slug": "happiness-cantril-ladder", "title": "Self-reported life satisfaction", "yAxis": {"max": 10, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 2003, "version": 31, "subtitle": "Average of survey responses. The survey question asks respondents their current position on a hypothetical [ladder](#dod:cantril-ladder), where the best possible life for them is a 10, and the worst possible life is a 0.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/happiness-and-life-satisfaction/", "dimensions": [{"display": {"tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1025227}], "entityType": "country", "isPublished": true, "hideRelativeToggle": false, "selectedEntityNames": ["World", "Europe", "Asia", "Africa", "South America", "North America", "Oceania"]} | happiness-cantril-ladder | LineChart | 2016-05-28 01:29:10 | 2025-04-02 14:22:54 | e2+/f7WR93VFHtduNqTfWw== |
65 | 65 | 0191b6c7-36b5-79cf-9c2f-ac79ae5b774d | {"id": 250, "map": {"time": 2005, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "life-satisfaction-vs-child-mortality", "title": "Life satisfaction vs. child mortality", "xAxis": {"min": 0, "canChangeScaleType": true}, "yAxis": {"max": 8, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 40, "subtitle": "The vertical axis shows self-reported life satisfaction in the [Cantril Ladder](#dod:cantril-ladder) (0-10 point scale with higher values representing higher life satisfaction). The horizontal axis shows the share of children who die before age five.", "originUrl": "https://ourworldindata.org/happiness-and-life-satisfaction/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"tolerance": 2}, "property": "y", "variableId": 1025227}, {"display": {"name": "Child mortality", "unit": "deaths per 100 live births", "tolerance": 2}, "property": "x", "variableId": 1027772}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "matchingEntitiesOnly": true} | {"id": 250, "map": {"time": 2005, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "life-satisfaction-vs-child-mortality", "title": "Life satisfaction vs. child mortality", "xAxis": {"min": 0, "canChangeScaleType": true}, "yAxis": {"max": 8, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 40, "subtitle": "The vertical axis shows self-reported life satisfaction in the [Cantril Ladder](#dod:cantril-ladder) (0-10 point scale with higher values representing higher life satisfaction). The horizontal axis shows the share of children who die before age five.", "originUrl": "https://ourworldindata.org/happiness-and-life-satisfaction/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"tolerance": 2}, "property": "y", "variableId": 1025227}, {"display": {"name": "Child mortality", "unit": "deaths per 100 live births", "tolerance": 2}, "property": "x", "variableId": 1027772}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "matchingEntitiesOnly": true} | life-satisfaction-vs-child-mortality | ScatterPlot | 2016-05-28 01:46:30 | 2025-04-28 14:25:47 | t0TNO47njmYvIDUrxVt4sQ== |
66 | 66 | 0191b6c7-36b7-779a-8e53-35c101092644 | {"id": 251, "map": {"time": 2017, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "note": "GDP per capita is expressed in [international-$](#dod:int_dollar_abbreviation) at 2021 prices.", "slug": "gdp-vs-happiness", "title": "Self-reported life satisfaction vs. GDP per capita", "xAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 50, "subtitle": "Self-reported life satisfaction is measured on a [scale](#dod:cantril-ladder) ranging from 0-10, where 10 is the highest possible life satisfaction. GDP per capita is adjusted for inflation and differences in living costs between countries.", "originUrl": "https://ourworldindata.org/happiness-and-life-satisfaction/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Life satisfaction", "unit": "0–10", "tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1025227}, {"property": "x", "variableId": 1008370}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "compareEndPointsOnly": true, "matchingEntitiesOnly": true} | {"id": 251, "map": {"time": 2017, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "note": "GDP per capita is expressed in [international-$](#dod:int_dollar_abbreviation) at 2021 prices.", "slug": "gdp-vs-happiness", "title": "Self-reported life satisfaction vs. GDP per capita", "xAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 50, "subtitle": "Self-reported life satisfaction is measured on a [scale](#dod:cantril-ladder) ranging from 0-10, where 10 is the highest possible life satisfaction. GDP per capita is adjusted for inflation and differences in living costs between countries.", "originUrl": "https://ourworldindata.org/happiness-and-life-satisfaction/", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Life satisfaction", "unit": "0–10", "tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1025227}, {"property": "x", "variableId": 1008370}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "compareEndPointsOnly": true, "matchingEntitiesOnly": true} | gdp-vs-happiness | ScatterPlot | 2016-05-28 02:15:42 | 2025-04-02 14:22:56 | dZNfMJVSsKps92yI0nkusQ== |
67 | 67 | 0191b6c7-36b8-7bb9-927b-1f8ec4d2d6f4 | {"id": 254, "map": {"time": 2025, "colorScale": {"baseColorScheme": "PuBu", "binningStrategy": "manual", "legendDescription": "Median age", "customNumericLabels": ["", "", "", "", "", "", "", ""], "customNumericValues": [10, 20, 30, 40, 50, 60, 70]}, "columnSlug": "950961"}, "slug": "median-age", "title": "Median age", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 36, "subtitle": "The median age splits the population into two equal groups, with as many people older than it as people younger than it. Future projections are based on the [UN medium scenario](#dod:un-projection-scenarios).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/age-structure", "dimensions": [{"display": {"unit": "years", "shortUnit": "", "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 950958}, {"display": {"name": "Median age", "isProjection": true, "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 950961}], "isPublished": true, "missingDataStrategy": "show", "selectedEntityNames": ["World", "China", "Japan", "India", "Brazil", "Russia", "United Kingdom", "United States", "Nigeria"], "hideAnnotationFieldsInTitle": {"time": true}} | {"id": 254, "map": {"time": 2025, "colorScale": {"baseColorScheme": "PuBu", "binningStrategy": "manual", "legendDescription": "Median age", "customNumericLabels": ["", "", "", "", "", "", "", ""], "customNumericValues": [10, 20, 30, 40, 50, 60, 70]}, "columnSlug": "950961"}, "slug": "median-age", "title": "Median age", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 36, "subtitle": "The median age splits the population into two equal groups, with as many people older than it as people younger than it. Future projections are based on the [UN medium scenario](#dod:un-projection-scenarios).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/age-structure", "dimensions": [{"display": {"unit": "years", "shortUnit": "", "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 950958}, {"display": {"name": "Median age", "isProjection": true, "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 950961}], "isPublished": true, "missingDataStrategy": "show", "selectedEntityNames": ["World", "China", "Japan", "India", "Brazil", "Russia", "United Kingdom", "United States", "Nigeria"], "hideAnnotationFieldsInTitle": {"time": true}} | median-age | LineChart | 2016-06-01 13:56:56 | 2025-06-20 10:32:42 | EDPrq6gNJX3nER4HkCfy4Q== |
68 | 68 | 0191b6c7-36ba-794d-8295-0bf4230120fb | {"id": 257, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "note": "This data is measured in [international-$](#dod:int_dollar_abbreviation) at 2017 prices. Income has been [equivalized](#dod:equivalization).", "slug": "median-and-mean-income-after-tax-lis", "title": "Median and mean income (after tax)", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 22, "subtitle": "This data is adjusted for inflation and for differences in living costs between countries. Income here is measured after taxes and benefits.", "originUrl": "https://ourworldindata.org/economic-inequality", "dimensions": [{"display": {"name": "Mean", "unit": "international-$ in 2017 prices", "shortUnit": "$", "tolerance": 5}, "property": "y", "variableId": 1009250}, {"display": {"name": "Median", "unit": "international-$ in 2017 prices", "tolerance": 5}, "property": "y", "variableId": 1009256}], "isPublished": true, "variantName": "LIS", "addCountryMode": "change-country", "hideRelativeToggle": false, "selectedEntityNames": ["United States"], "hideAnnotationFieldsInTitle": {"entity": true}} | {"id": 257, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "note": "This data is measured in [international-$](#dod:int_dollar_abbreviation) at 2017 prices. Income has been [equivalized](#dod:equivalization).", "slug": "median-and-mean-income-after-tax-lis", "title": "Median and mean income (after tax)", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 22, "subtitle": "This data is adjusted for inflation and for differences in living costs between countries. Income here is measured after taxes and benefits.", "originUrl": "https://ourworldindata.org/economic-inequality", "dimensions": [{"display": {"name": "Mean", "unit": "international-$ in 2017 prices", "shortUnit": "$", "tolerance": 5}, "property": "y", "variableId": 1009250}, {"display": {"name": "Median", "unit": "international-$ in 2017 prices", "tolerance": 5}, "property": "y", "variableId": 1009256}], "isPublished": true, "variantName": "LIS", "addCountryMode": "change-country", "hideRelativeToggle": false, "selectedEntityNames": ["United States"], "hideAnnotationFieldsInTitle": {"entity": true}} | median-and-mean-income-after-tax-lis | LineChart | 2016-06-01 19:20:07 | 2025-02-05 14:53:53 | 3JBBMeg3iwP1kqmVZPA6Fg== |
69 | 69 | 0191b6c7-36bb-76db-913e-a347eb1c98a0 | {"id": 259, "map": {"colorScale": {"baseColorScheme": "RdBu", "binningStrategy": "manual", "legendDescription": "Latent Human Rights Protection Score", "customNumericColors": [null, null, null, null, "#e6f598", "#abdda4", "#66c2a5", "#3288bd", "#5e4fa2"], "customNumericValues": [-4, -3, -2, -1, 0, 1, 2, 3, 4, 5]}, "columnSlug": "358", "timeTolerance": 0}, "tab": "map", "note": "The scores are based on a statistical model that combines measures from several other sources.", "slug": "physical-integrity-rights-score-fariss-kenwick-reuning", "title": "Physical integrity rights score", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 1946, "version": 33, "subtitle": "The score captures the extent to which citizens are protected from government killings, torture, political imprisonments, extrajudicial executions, mass killings and disappearances. Large positive scores mean abuses are rare relative to other countries and years, large negative scores that abuses are relatively widespread.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/human-rights/", "dimensions": [{"display": {"name": "Human Rights Protection Scores – by Christopher Farris and Keith Schnakenberg", "unit": "", "color": "#5B5B5B", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 358}], "isPublished": true, "variantName": "Fariss et al.", "selectedEntityNames": ["China", "Hungary", "North Korea", "South Korea", "Norway", "Albania"]} | {"id": 259, "map": {"colorScale": {"baseColorScheme": "RdBu", "binningStrategy": "manual", "legendDescription": "Latent Human Rights Protection Score", "customNumericColors": [null, null, null, null, "#e6f598", "#abdda4", "#66c2a5", "#3288bd", "#5e4fa2"], "customNumericValues": [-4, -3, -2, -1, 0, 1, 2, 3, 4, 5]}, "columnSlug": "358", "timeTolerance": 0}, "tab": "map", "note": "The scores are based on a statistical model that combines measures from several other sources.", "slug": "physical-integrity-rights-score-fariss-kenwick-reuning", "title": "Physical integrity rights score", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": 1946, "version": 33, "subtitle": "The score captures the extent to which citizens are protected from government killings, torture, political imprisonments, extrajudicial executions, mass killings and disappearances. Large positive scores mean abuses are rare relative to other countries and years, large negative scores that abuses are relatively widespread.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/human-rights/", "dimensions": [{"display": {"name": "Human Rights Protection Scores – by Christopher Farris and Keith Schnakenberg", "unit": "", "color": "#5B5B5B", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 358}], "isPublished": true, "variantName": "Fariss et al.", "selectedEntityNames": ["China", "Hungary", "North Korea", "South Korea", "Norway", "Albania"]} | physical-integrity-rights-score-fariss-kenwick-reuning | LineChart | 2016-06-06 23:05:59 | 2024-09-05 09:00:28 | RsvK2GFNT/UMf08hqN29+A== |
70 | 70 | 0191b6c7-36bc-767f-b9b1-2982cca267ab | {"id": 266, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "364", "timeTolerance": 1}, "slug": "us-education-expenditure-as-share-of-gdp-public-and-private-institutions", "title": "Education spending as share of GDP in the United States", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 9, "subtitle": "Expenditures of educational institutions in the United States, by control of institution (public or private)", "originUrl": "https://ourworldindata.org/financing-education", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Public education expenditure", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 365}, {"display": {"name": "Private education expenditure", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 364}], "isPublished": true, "addCountryMode": "disabled", "baseColorScheme": "OwidCategoricalB", "selectedEntityNames": ["United States"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 266, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "364", "timeTolerance": 1}, "slug": "us-education-expenditure-as-share-of-gdp-public-and-private-institutions", "title": "Education spending as share of GDP in the United States", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 9, "subtitle": "Expenditures of educational institutions in the United States, by control of institution (public or private)", "originUrl": "https://ourworldindata.org/financing-education", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Public education expenditure", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 365}, {"display": {"name": "Private education expenditure", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 364}], "isPublished": true, "addCountryMode": "disabled", "baseColorScheme": "OwidCategoricalB", "selectedEntityNames": ["United States"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | us-education-expenditure-as-share-of-gdp-public-and-private-institutions | StackedArea | 2016-06-23 04:21:01 | 2025-05-22 14:12:49 | Zq6PKriXmZGCNUOs4Nyhdg== |
71 | 71 | 0191b6c7-36be-7727-9cd3-01a9131fdab7 | {"id": 269, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "369", "timeTolerance": 1}, "slug": "revenues-for-public-schools-by-source-gdp-us", "title": "Funding sources for public schools", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 6, "subtitle": "Revenues for public elementary and secondary schools in the US, as share of GDP, by source of funds", "originUrl": "https://ourworldindata.org/financing-education", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Local", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1304}, {"display": {"name": "State", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1303}, {"display": {"name": "Federal/Unassigned", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1302}], "isPublished": true, "addCountryMode": "disabled", "baseColorScheme": "OwidCategoricalC", "selectedEntityNames": ["United States"]} | {"id": 269, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "369", "timeTolerance": 1}, "slug": "revenues-for-public-schools-by-source-gdp-us", "title": "Funding sources for public schools", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 6, "subtitle": "Revenues for public elementary and secondary schools in the US, as share of GDP, by source of funds", "originUrl": "https://ourworldindata.org/financing-education", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Local", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1304}, {"display": {"name": "State", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1303}, {"display": {"name": "Federal/Unassigned", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1302}], "isPublished": true, "addCountryMode": "disabled", "baseColorScheme": "OwidCategoricalC", "selectedEntityNames": ["United States"]} | revenues-for-public-schools-by-source-gdp-us | StackedArea | 2016-06-27 23:46:02 | 2024-09-05 09:00:28 | nKhAKqEBbjDECum3jdrDyg== |
72 | 72 | 0191b6c7-36bf-74cf-9681-d780012b575f | {"id": 270, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "", "customNumericLabels": ["", "", "", "", ""], "customNumericValues": [0, 2, 4, 6, 8, 10]}, "timeTolerance": 4}, "tab": "map", "slug": "total-government-expenditure-on-education-gdp", "title": "Public spending on education as a share of GDP", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 23, "hasMapTab": true, "originUrl": "https://ourworldindata.org/financing-education", "dimensions": [{"property": "y", "variableId": 1039811}], "isPublished": true, "selectedEntityNames": ["Malawi", "Congo", "Belarus", "United States", "United Kingdom", "Israel", "Spain", "France", "Norway"], "selectedEntityColors": {"Bolivia": "#FF3E96"}, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 270, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "", "customNumericLabels": ["", "", "", "", ""], "customNumericValues": [0, 2, 4, 6, 8, 10]}, "timeTolerance": 4}, "tab": "map", "slug": "total-government-expenditure-on-education-gdp", "title": "Public spending on education as a share of GDP", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 23, "hasMapTab": true, "originUrl": "https://ourworldindata.org/financing-education", "dimensions": [{"property": "y", "variableId": 1039811}], "isPublished": true, "selectedEntityNames": ["Malawi", "Congo", "Belarus", "United States", "United Kingdom", "Israel", "Spain", "France", "Norway"], "selectedEntityColors": {"Bolivia": "#FF3E96"}, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | total-government-expenditure-on-education-gdp | LineChart | 2016-06-28 21:31:32 | 2025-05-30 09:39:01 | 25VXmKCmUln/I6IfgXa7OA== |
73 | 73 | 0191b6c7-36c0-7e31-b606-3e641791c140 | {"id": 271, "map": {"colorScale": {"baseColorScheme": "YlGn", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": [null, null], "customNumericValues": [0, 5, 10, 15, 20, 25, 30, 27]}}, "tab": "map", "slug": "share-of-education-in-government-expenditure", "title": "Education spending as share of total government spending", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 22, "subtitle": "Total [general government](#dod:general-government) expenditure on education as a percentage of total government expenditure on all sectors.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/financing-education", "dimensions": [{"display": {"tolerance": 5, "roundingMode": "significantFigures", "includeInTable": true, "numDecimalPlaces": 1, "numSignificantFigures": 2}, "property": "y", "variableId": 1008585}], "isPublished": true, "selectedEntityNames": ["Netherlands", "United States", "United Kingdom", "China", "India", "Japan", "Mexico", "South Africa"]} | {"id": 271, "map": {"colorScale": {"baseColorScheme": "YlGn", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": [null, null], "customNumericValues": [0, 5, 10, 15, 20, 25, 30, 27]}}, "tab": "map", "slug": "share-of-education-in-government-expenditure", "title": "Education spending as share of total government spending", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 22, "subtitle": "Total [general government](#dod:general-government) expenditure on education as a percentage of total government expenditure on all sectors.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/financing-education", "dimensions": [{"display": {"tolerance": 5, "roundingMode": "significantFigures", "includeInTable": true, "numDecimalPlaces": 1, "numSignificantFigures": 2}, "property": "y", "variableId": 1008585}], "isPublished": true, "selectedEntityNames": ["Netherlands", "United States", "United Kingdom", "China", "India", "Japan", "Mexico", "South Africa"]} | share-of-education-in-government-expenditure | LineChart | 2016-06-29 01:53:59 | 2025-07-10 05:44:42 | MG1KKUw+jZX3AncobFtqYg== |
74 | 74 | 0191b6c7-36c1-7d02-8c71-d123506e3c09 | {"id": 273, "map": {"time": 1995, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "primary-edu-spending-vs-overall-edu-spending", "title": "Government spending on education overall vs. primary education", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 19, "subtitle": "Government spending is expressed as a % of GDP.", "originUrl": "https://ourworldindata.org/financing-education", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1029604}, {"display": {"tolerance": 5, "includeInTable": true}, "property": "x", "variableId": 1029052}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "comparisonLines": [{"label": "spending half on primary education", "yEquals": "2*x"}, {"label": "spending a third on primary education", "yEquals": "3*x"}], "hideRelativeToggle": false} | {"id": 273, "map": {"time": 1995, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "primary-edu-spending-vs-overall-edu-spending", "title": "Government spending on education overall vs. primary education", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 19, "subtitle": "Government spending is expressed as a % of GDP.", "originUrl": "https://ourworldindata.org/financing-education", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1029604}, {"display": {"tolerance": 5, "includeInTable": true}, "property": "x", "variableId": 1029052}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "comparisonLines": [{"label": "spending half on primary education", "yEquals": "2*x"}, {"label": "spending a third on primary education", "yEquals": "3*x"}], "hideRelativeToggle": false} | primary-edu-spending-vs-overall-edu-spending | ScatterPlot | 2016-06-29 18:40:50 | 2025-05-14 12:39:16 | PD4mgeDFuRE9gWmTJAEG1Q== |
75 | 75 | 0191b6c7-36c2-7325-b064-ae0feef11b0c | {"id": 275, "map": {"time": 1996, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "share-edu-spending-gdp-vs-share-edu-total-spending", "title": "Share of GDP spent on education vs. share of government spending assigned to education", "xAxis": {"min": 0}, "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 31, "subtitle": "[General government](#dod:general-government) spending on education (current, capital, and transfers) is shown as a percentage of total government spending across all sectors and as a percentage of GDP.", "originUrl": "https://ourworldindata.org/financing-education", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"unit": "%", "tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1029593}, {"display": {"tolerance": 5, "includeInTable": true}, "property": "x", "variableId": 1029604}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "excludedEntityNames": ["World"]} | {"id": 275, "map": {"time": 1996, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "share-edu-spending-gdp-vs-share-edu-total-spending", "title": "Share of GDP spent on education vs. share of government spending assigned to education", "xAxis": {"min": 0}, "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 31, "subtitle": "[General government](#dod:general-government) spending on education (current, capital, and transfers) is shown as a percentage of total government spending across all sectors and as a percentage of GDP.", "originUrl": "https://ourworldindata.org/financing-education", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"unit": "%", "tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 1029593}, {"display": {"tolerance": 5, "includeInTable": true}, "property": "x", "variableId": 1029604}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideRelativeToggle": false, "excludedEntityNames": ["World"]} | share-edu-spending-gdp-vs-share-edu-total-spending | ScatterPlot | 2016-06-29 21:43:00 | 2025-05-22 14:04:19 | rSa7OTTVZU8+cJHaL8CZYg== |
76 | 76 | 0191b6c7-36c4-74e6-920d-defb7fe3f7ee | {"id": 277, "map": {"time": 2000, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "378", "timeTolerance": 1}, "slug": "average-oecd-education-expenditure-by-source-of-funding-gdp", "title": "Average OECD non-tertiary education spending by source of funding", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 7, "subtitle": "Average expenditure on educational institutions given as a share of [GDP](#dod:gdp), by source of funding (primary, secondary and post-secondary non-tertiary).", "originUrl": "https://ourworldindata.org/financing-education", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Private expenditure", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 377}, {"display": {"name": "Public expenditure", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 378}], "isPublished": true, "addCountryMode": "disabled", "hideRelativeToggle": false, "selectedEntityNames": ["OECD"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 277, "map": {"time": 2000, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "378", "timeTolerance": 1}, "slug": "average-oecd-education-expenditure-by-source-of-funding-gdp", "title": "Average OECD non-tertiary education spending by source of funding", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 7, "subtitle": "Average expenditure on educational institutions given as a share of [GDP](#dod:gdp), by source of funding (primary, secondary and post-secondary non-tertiary).", "originUrl": "https://ourworldindata.org/financing-education", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Private expenditure", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 377}, {"display": {"name": "Public expenditure", "unit": "% of GDP", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 378}], "isPublished": true, "addCountryMode": "disabled", "hideRelativeToggle": false, "selectedEntityNames": ["OECD"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | average-oecd-education-expenditure-by-source-of-funding-gdp | StackedArea | 2016-06-30 01:45:46 | 2025-06-11 09:24:44 | ZXZuibPbsNgxauEEHIn0rA== |
77 | 77 | 0191b6c7-36c5-7a2e-9b01-467c06b6dd53 | {"id": 282, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "382", "timeTolerance": 1}, "note": "DNA sequencing is divided by 1000 to fit on the chart.", "slug": "costs-of-66-different-technologies-over-time", "title": "The cost of 66 different technologies over time", "yAxis": {"max": 0, "min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 14, "subtitle": "The cost of each technology is expressed in different units, chosen for visualization purposes.", "originUrl": "https://ourworldindata.org/technological-change", "dimensions": [{"display": {"tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 817640}], "entityType": "technology", "isPublished": true, "hideTimeline": true, "entityTypePlural": "technologies", "selectedEntityNames": ["Wind turbine (Denmark)", "Monochrome television", "Beer (Japan)", "Polyester fiber", "Aluminum", "Caprolactam", "Ethanol (Brazil)", "DNA sequencing", "Ammonia", "Automotive (US)", "Photovoltaics"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 282, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "382", "timeTolerance": 1}, "note": "DNA sequencing is divided by 1000 to fit on the chart.", "slug": "costs-of-66-different-technologies-over-time", "title": "The cost of 66 different technologies over time", "yAxis": {"max": 0, "min": 0, "scaleType": "log", "canChangeScaleType": true}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 14, "subtitle": "The cost of each technology is expressed in different units, chosen for visualization purposes.", "originUrl": "https://ourworldindata.org/technological-change", "dimensions": [{"display": {"tolerance": 5, "includeInTable": true}, "property": "y", "variableId": 817640}], "entityType": "technology", "isPublished": true, "hideTimeline": true, "entityTypePlural": "technologies", "selectedEntityNames": ["Wind turbine (Denmark)", "Monochrome television", "Beer (Japan)", "Polyester fiber", "Aluminum", "Caprolactam", "Ethanol (Brazil)", "DNA sequencing", "Ammonia", "Automotive (US)", "Photovoltaics"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | costs-of-66-different-technologies-over-time | LineChart | 2016-07-08 12:46:48 | 2025-04-07 10:25:11 | DTXiBwHI2k4MWCKOSAwpoQ== |
78 | 78 | 0191b6c7-36c6-7739-9453-5d2152ccda56 | {"id": 287, "map": {"region": "Europe", "colorScale": {"baseColorScheme": "PuBuGn", "binningStrategy": "manual", "legendDescription": "", "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}, "columnSlug": "271", "timeTolerance": 1}, "slug": "public-health-insurance-coverage", "title": "Public health insurance coverage in Western Europe", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 6, "subtitle": "Share of the labor force covered by public health insurance in Western Europe.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/financing-healthcare/", "dimensions": [{"display": {"name": "", "unit": "Percent of Labour Force", "color": "#ffd53e", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 271}], "isPublished": true, "selectedEntityNames": ["Sweden", "Italy", "Germany", "United Kingdom"], "selectedEntityColors": {"United Kingdom": "#b36216"}} | {"id": 287, "map": {"region": "Europe", "colorScale": {"baseColorScheme": "PuBuGn", "binningStrategy": "manual", "legendDescription": "", "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}, "columnSlug": "271", "timeTolerance": 1}, "slug": "public-health-insurance-coverage", "title": "Public health insurance coverage in Western Europe", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 6, "subtitle": "Share of the labor force covered by public health insurance in Western Europe.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/financing-healthcare/", "dimensions": [{"display": {"name": "", "unit": "Percent of Labour Force", "color": "#ffd53e", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 271}], "isPublished": true, "selectedEntityNames": ["Sweden", "Italy", "Germany", "United Kingdom"], "selectedEntityColors": {"United Kingdom": "#b36216"}} | public-health-insurance-coverage | LineChart | 2016-07-14 22:51:24 | 2024-09-05 09:00:28 | ZXlLYHmXK2QZPk7RTD7ufw== |
79 | 79 | 0191b6c7-36c7-7614-b156-16f3044d413f | {"id": 288, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "1307", "timeTolerance": 1}, "slug": "percentage-of-persons-without-health-insurance-coverage-us", "title": "Percentage of people without health insurance in the United States", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 4, "originUrl": "https://ourworldindata.org/financing-healthcare/", "dimensions": [{"property": "y", "variableId": 98089}], "hideLegend": true, "isPublished": true, "selectedEntityNames": ["United States"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 288, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "1307", "timeTolerance": 1}, "slug": "percentage-of-persons-without-health-insurance-coverage-us", "title": "Percentage of people without health insurance in the United States", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 4, "originUrl": "https://ourworldindata.org/financing-healthcare/", "dimensions": [{"property": "y", "variableId": 98089}], "hideLegend": true, "isPublished": true, "selectedEntityNames": ["United States"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | percentage-of-persons-without-health-insurance-coverage-us | LineChart | 2016-07-19 22:49:43 | 2024-09-05 09:00:28 | yXy7qmkx4LlCLk6THkNvRQ== |
80 | 80 | 0191b6c7-36c8-70bb-a9a0-0a1a76ae8280 | {"id": 290, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "313", "timeTolerance": 1}, "slug": "fertility-vs-child-mortality-family-planning-policy", "title": "Children per woman vs. child mortality in countries with and without strict family planning policy", "xAxis": {"min": 0}, "yAxis": {"min": 1}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 26, "subtitle": "There is a strong correlation between high child mortality and high fertility.", "originUrl": "ourworldindata.org/fertility-rate", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Children per woman", "unit": "births per woman"}, "property": "y", "variableId": 950920}, {"display": {"name": "Child mortality rate", "unit": "%", "shortUnit": "%", "conversionFactor": 1}, "property": "x", "variableId": 950974}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": false, "hideTimeline": true, "hideRelativeToggle": false} | {"id": 290, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "313", "timeTolerance": 1}, "slug": "fertility-vs-child-mortality-family-planning-policy", "title": "Children per woman vs. child mortality in countries with and without strict family planning policy", "xAxis": {"min": 0}, "yAxis": {"min": 1}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 26, "subtitle": "There is a strong correlation between high child mortality and high fertility.", "originUrl": "ourworldindata.org/fertility-rate", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Children per woman", "unit": "births per woman"}, "property": "y", "variableId": 950920}, {"display": {"name": "Child mortality rate", "unit": "%", "shortUnit": "%", "conversionFactor": 1}, "property": "x", "variableId": 950974}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": false, "hideTimeline": true, "hideRelativeToggle": false} | fertility-vs-child-mortality-family-planning-policy | ScatterPlot | 2016-07-21 22:23:34 | 2024-11-15 17:17:53 | pBrKRG4bWRdWOGEj4x6q8g== |
81 | 81 | 0191b6c7-36c9-7ee9-b91a-05202c1ef921 | {"id": 291, "map": {"colorScale": {"baseColorScheme": "OrRd", "binningStrategy": "manual", "legendDescription": "Births Rate (per 1,000)", "customNumericValues": [0, 5, 10, 15, 20, 25, 30, 40, 55], "customHiddenCategories": {" ": true}}, "columnSlug": "1308", "timeTolerance": 1}, "tab": "map", "slug": "birth-rate-the-number-of-births-per-1000-people-in-the-population", "title": "Birth rate", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 9, "subtitle": "Birth rate is measured as the number of births per 1,000 people in the population", "hasMapTab": true, "originUrl": "https://ourworldindata.org/fertility-rate", "dimensions": [{"display": {"name": "", "unit": "per 1,000 (in the entire population)", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1308}], "isPublished": false, "variantName": "Mitchell", "selectedEntityNames": ["China", "Portugal", "Tunisia", "Sweden", "England and Wales"]} | {"id": 291, "map": {"colorScale": {"baseColorScheme": "OrRd", "binningStrategy": "manual", "legendDescription": "Births Rate (per 1,000)", "customNumericValues": [0, 5, 10, 15, 20, 25, 30, 40, 55], "customHiddenCategories": {" ": true}}, "columnSlug": "1308", "timeTolerance": 1}, "tab": "map", "slug": "birth-rate-the-number-of-births-per-1000-people-in-the-population", "title": "Birth rate", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 9, "subtitle": "Birth rate is measured as the number of births per 1,000 people in the population", "hasMapTab": true, "originUrl": "https://ourworldindata.org/fertility-rate", "dimensions": [{"display": {"name": "", "unit": "per 1,000 (in the entire population)", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1308}], "isPublished": false, "variantName": "Mitchell", "selectedEntityNames": ["China", "Portugal", "Tunisia", "Sweden", "England and Wales"]} | birth-rate-the-number-of-births-per-1000-people-in-the-population | LineChart | 2016-07-21 23:21:49 | 2024-12-20 15:23:37 | O7vCHdHp0G4SVV66kuWZHQ== |
82 | 82 | 0191b6c7-36cb-79bc-a100-39b212416eef | {"id": 292, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "1309", "timeTolerance": 1}, "slug": "demographic-transition-sweden", "title": "The demographic transition in Sweden", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 21, "subtitle": "Birth and death rates are expressed per 1,000 of the population.", "originUrl": "https://ourworldindata.org/population-growth/", "dimensions": [{"display": {"name": "Crude birth rate", "unit": "births per 1,000 people", "color": "#00295b", "tolerance": 5, "isProjection": false, "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 1308}, {"display": {"name": "Crude death rate", "unit": "per 1,000", "color": "#b13507", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1309}], "sourceDesc": "Brian Mitchell, International Historical Statistics (2013)", "isPublished": true, "variantName": "", "addCountryMode": "disabled", "selectedEntityNames": ["Sweden"], "selectedFacetStrategy": "entity", "hideAnnotationFieldsInTitle": {"entity": true}} | {"id": 292, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "1309", "timeTolerance": 1}, "slug": "demographic-transition-sweden", "title": "The demographic transition in Sweden", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 21, "subtitle": "Birth and death rates are expressed per 1,000 of the population.", "originUrl": "https://ourworldindata.org/population-growth/", "dimensions": [{"display": {"name": "Crude birth rate", "unit": "births per 1,000 people", "color": "#00295b", "tolerance": 5, "isProjection": false, "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 1308}, {"display": {"name": "Crude death rate", "unit": "per 1,000", "color": "#b13507", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1309}], "sourceDesc": "Brian Mitchell, International Historical Statistics (2013)", "isPublished": true, "variantName": "", "addCountryMode": "disabled", "selectedEntityNames": ["Sweden"], "selectedFacetStrategy": "entity", "hideAnnotationFieldsInTitle": {"entity": true}} | demographic-transition-sweden | LineChart | 2016-07-21 23:48:38 | 2024-09-05 09:00:28 | xtFEbIUG92oUFtS8lV9ZQg== |
83 | 83 | 0191b6c7-36cc-7db1-953b-20eae4070c03 | {"id": 293, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "1310", "timeTolerance": 1}, "slug": "interpersonal-trust-in-the-us", "title": "Interpersonal trust in the United States", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 13, "subtitle": "Share of respondents who agree with the statement \"Most people can be trusted\".", "originUrl": "https://ourworldindata.org/trust", "dimensions": [{"display": {"shortUnit": "%", "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 98090}], "isPublished": true, "selectedEntityNames": ["United States"]} | {"id": 293, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "1310", "timeTolerance": 1}, "slug": "interpersonal-trust-in-the-us", "title": "Interpersonal trust in the United States", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 13, "subtitle": "Share of respondents who agree with the statement \"Most people can be trusted\".", "originUrl": "https://ourworldindata.org/trust", "dimensions": [{"display": {"shortUnit": "%", "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 98090}], "isPublished": true, "selectedEntityNames": ["United States"]} | interpersonal-trust-in-the-us | LineChart | 2016-07-23 02:53:31 | 2024-09-05 09:00:28 | OpGC8T6h/L245wYuRW/g5Q== |
84 | 84 | 0191b6c7-36cd-7535-84b8-888614915e79 | {"id": 294, "map": {"time": 2015, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "note": "GDP per capita data is expressed in [international-$](#dod:int_dollar_abbreviation) at 2011 prices.", "slug": "human-rights-index-vs-gdp-per-capita", "title": "Human rights index vs. GDP per capita", "xAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "yAxis": {"max": 1, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 50, "subtitle": "The human rights index is by [V-Dem](#dod:v-dem), based on expert estimates, and ranges from 0 to 1 (most rights). GDP per capita data is adjusted for inflation and for differences in living costs between countries.", "originUrl": "https://ourworldindata.org/human-rights", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Human rights", "includeInTable": true}, "property": "y", "variableId": 1034526}, {"display": {"includeInTable": true, "numDecimalPlaces": 0}, "property": "x", "variableId": 900793}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "timelineMinTime": 1946, "hideRelativeToggle": false, "excludedEntityNames": ["World"]} | {"id": 294, "map": {"time": 2015, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "note": "GDP per capita data is expressed in [international-$](#dod:int_dollar_abbreviation) at 2011 prices.", "slug": "human-rights-index-vs-gdp-per-capita", "title": "Human rights index vs. GDP per capita", "xAxis": {"min": 0, "scaleType": "log", "canChangeScaleType": true}, "yAxis": {"max": 1, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 50, "subtitle": "The human rights index is by [V-Dem](#dod:v-dem), based on expert estimates, and ranges from 0 to 1 (most rights). GDP per capita data is adjusted for inflation and for differences in living costs between countries.", "originUrl": "https://ourworldindata.org/human-rights", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Human rights", "includeInTable": true}, "property": "y", "variableId": 1034526}, {"display": {"includeInTable": true, "numDecimalPlaces": 0}, "property": "x", "variableId": 900793}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "timelineMinTime": 1946, "hideRelativeToggle": false, "excludedEntityNames": ["World"]} | human-rights-index-vs-gdp-per-capita | ScatterPlot | 2016-07-27 18:37:38 | 2025-07-10 19:35:26 | LhoRgGrS/ZBWHW4Ebd8oDw== |
85 | 85 | 0191b6c7-36ce-7115-b72b-90d7012a27f1 | {"id": 295, "map": {"colorScale": {"baseColorScheme": "YlGn", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": [null], "customNumericLabels": ["", "", "", "", "", "", "", "", "", ""], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 1]}, "timeTolerance": 10}, "tab": "map", "slug": "self-reported-trust-attitudes", "title": "Share of people agreeing with the statement \"most people can be trusted\"", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 20, "subtitle": "", "hasMapTab": true, "originUrl": "https://ourworldindata.org/trust", "dimensions": [{"display": {"name": "Trust in others", "tolerance": 10, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1076233}], "isPublished": true, "selectedEntityNames": ["Norway", "China", "Sweden", "Germany", "Canada", "United States", "France", "Mexico", "Peru", "Egypt", "Ethiopia"]} | {"id": 295, "map": {"colorScale": {"baseColorScheme": "YlGn", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": [null], "customNumericLabels": ["", "", "", "", "", "", "", "", "", ""], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 1]}, "timeTolerance": 10}, "tab": "map", "slug": "self-reported-trust-attitudes", "title": "Share of people agreeing with the statement \"most people can be trusted\"", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 20, "subtitle": "", "hasMapTab": true, "originUrl": "https://ourworldindata.org/trust", "dimensions": [{"display": {"name": "Trust in others", "tolerance": 10, "includeInTable": true, "numDecimalPlaces": 0}, "property": "y", "variableId": 1076233}], "isPublished": true, "selectedEntityNames": ["Norway", "China", "Sweden", "Germany", "Canada", "United States", "France", "Mexico", "Peru", "Egypt", "Ethiopia"]} | self-reported-trust-attitudes | LineChart | 2016-07-28 00:52:21 | 2025-07-01 11:28:16 | W+MNxShCR1g/3NiqEyyUEA== |
86 | 86 | 0191b6c7-36d0-7196-bcb1-4cb50ce14b49 | {"id": 296, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "1313", "timeTolerance": 1}, "slug": "public-trust-in-government", "title": "Trust in government in the United States", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 14, "subtitle": "Share of people in the United States who say they trust the government to do what is right \"just about always\" or \"most of the time\".", "originUrl": "https://ourworldindata.org/trust", "dimensions": [{"display": {"name": "Trust in Government", "unit": "%", "shortUnit": "%", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1313}], "hideLegend": true, "isPublished": true, "hideTimeline": true, "addCountryMode": "disabled", "selectedEntityNames": ["United States"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 296, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "1313", "timeTolerance": 1}, "slug": "public-trust-in-government", "title": "Trust in government in the United States", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 14, "subtitle": "Share of people in the United States who say they trust the government to do what is right \"just about always\" or \"most of the time\".", "originUrl": "https://ourworldindata.org/trust", "dimensions": [{"display": {"name": "Trust in Government", "unit": "%", "shortUnit": "%", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1313}], "hideLegend": true, "isPublished": true, "hideTimeline": true, "addCountryMode": "disabled", "selectedEntityNames": ["United States"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | public-trust-in-government | LineChart | 2016-07-28 01:57:32 | 2024-09-05 09:00:28 | PCqDPPB2z1JLx+0twHeERg== |
87 | 87 | 0191b6c7-36d1-7abc-b483-98d955108c46 | {"id": 297, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#6de354", "#59ba47", "#60d4f2", "#21c1fc", "#6babeb", "#3288ce", "#006eb5"], "customNumericValues": [1, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]}}, "tab": "map", "slug": "human-development-index", "title": "Human Development Index", "yAxis": {"max": 1, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 30, "subtitle": "The Human Development Index (HDI) is a summary measure of key dimensions of human development: a long and healthy life, a good education, and a decent standard of living. Higher values indicate higher human development.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/human-development-index/", "dimensions": [{"display": {"tolerance": 5}, "property": "y", "variableId": 1032439}], "isPublished": true, "hideRelativeToggle": false, "selectedEntityNames": ["United Kingdom", "United States", "South Korea", "India", "China", "Brazil", "Democratic Republic of Congo", "Chile", "Switzerland", "Central African Republic", "Cameroon", "Pakistan"], "hideAnnotationFieldsInTitle": {"time": true}} | {"id": 297, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#6de354", "#59ba47", "#60d4f2", "#21c1fc", "#6babeb", "#3288ce", "#006eb5"], "customNumericValues": [1, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]}}, "tab": "map", "slug": "human-development-index", "title": "Human Development Index", "yAxis": {"max": 1, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 30, "subtitle": "The Human Development Index (HDI) is a summary measure of key dimensions of human development: a long and healthy life, a good education, and a decent standard of living. Higher values indicate higher human development.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/human-development-index/", "dimensions": [{"display": {"tolerance": 5}, "property": "y", "variableId": 1032439}], "isPublished": true, "hideRelativeToggle": false, "selectedEntityNames": ["United Kingdom", "United States", "South Korea", "India", "China", "Brazil", "Democratic Republic of Congo", "Chile", "Switzerland", "Central African Republic", "Cameroon", "Pakistan"], "hideAnnotationFieldsInTitle": {"time": true}} | human-development-index | LineChart | 2016-07-28 02:25:26 | 2025-05-19 15:00:34 | co8roS7BUhc+AJSXXEAzQg== |
88 | 88 | 0191b6c7-36d2-75f1-ad0f-9d3bff442428 | {"id": 298, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "children-woman-death-vs-survival", "title": "Children per woman that survived childhood vs. those that died in childhood", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 16, "subtitle": "The total height of the pink and green areas shows the average number of children born per woman. The area in pink shows the average number of children an average woman gave birth to who died within the first five years of life.", "originUrl": "https://ourworldindata.org/child-mortality/", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Children that died in their first five years per woman", "unit": "children per woman", "shortUnit": "", "includeInTable": true}, "property": "y", "variableId": 813867}, {"display": {"name": "Children that survived past five years per woman", "unit": "children per woman", "shortUnit": "", "includeInTable": true}, "property": "y", "variableId": 813868}], "isPublished": true, "baseColorScheme": "OwidCategoricalD", "invertColorScheme": true, "hideRelativeToggle": false, "selectedEntityNames": ["Sweden"], "selectedEntityColors": {"Sweden": "#f6a324"}, "hideAnnotationFieldsInTitle": {"time": true}} | {"id": 298, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "children-woman-death-vs-survival", "title": "Children per woman that survived childhood vs. those that died in childhood", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 16, "subtitle": "The total height of the pink and green areas shows the average number of children born per woman. The area in pink shows the average number of children an average woman gave birth to who died within the first five years of life.", "originUrl": "https://ourworldindata.org/child-mortality/", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Children that died in their first five years per woman", "unit": "children per woman", "shortUnit": "", "includeInTable": true}, "property": "y", "variableId": 813867}, {"display": {"name": "Children that survived past five years per woman", "unit": "children per woman", "shortUnit": "", "includeInTable": true}, "property": "y", "variableId": 813868}], "isPublished": true, "baseColorScheme": "OwidCategoricalD", "invertColorScheme": true, "hideRelativeToggle": false, "selectedEntityNames": ["Sweden"], "selectedEntityColors": {"Sweden": "#f6a324"}, "hideAnnotationFieldsInTitle": {"time": true}} | children-woman-death-vs-survival | StackedArea | 2016-07-30 18:24:12 | 2024-09-19 10:26:45 | A4egbtwhSnj8oSSskEFvEA== |
89 | 89 | 0191b6c7-36d3-78b2-9a2e-046d90868615 | {"id": 299, "map": {"colorScale": {"baseColorScheme": "YlGnBu", "binningStrategy": "manual", "legendDescription": "Share of children vaccinated against measles", "customNumericColors": [null], "customNumericValues": [0, 20, 40, 60, 70, 80, 90, 95, 100]}, "timeTolerance": 1}, "tab": "map", "note": "Measles is a highly contagious viral disease, most common in young children. Its effects include blindness, inflammation of the brain, severe diarrhea, and severe respiratory infections such as pneumonia.", "slug": "share-of-children-vaccinated-against-measles", "title": "Share of one-year-olds vaccinated against measles", "yAxis": {"max": 100, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 27, "subtitle": "Share of one-year-olds who have received the first dose of the measles vaccine (MCV1).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/vaccination", "dimensions": [{"display": {"numDecimalPlaces": 0}, "property": "y", "variableId": 1004321}], "isPublished": true, "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 299, "map": {"colorScale": {"baseColorScheme": "YlGnBu", "binningStrategy": "manual", "legendDescription": "Share of children vaccinated against measles", "customNumericColors": [null], "customNumericValues": [0, 20, 40, 60, 70, 80, 90, 95, 100]}, "timeTolerance": 1}, "tab": "map", "note": "Measles is a highly contagious viral disease, most common in young children. Its effects include blindness, inflammation of the brain, severe diarrhea, and severe respiratory infections such as pneumonia.", "slug": "share-of-children-vaccinated-against-measles", "title": "Share of one-year-olds vaccinated against measles", "yAxis": {"max": 100, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 27, "subtitle": "Share of one-year-olds who have received the first dose of the measles vaccine (MCV1).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/vaccination", "dimensions": [{"display": {"numDecimalPlaces": 0}, "property": "y", "variableId": 1004321}], "isPublished": true, "selectedEntityNames": ["World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | share-of-children-vaccinated-against-measles | LineChart | 2016-08-01 15:09:14 | 2025-01-10 15:24:33 | 04qs/ZemhEG+JgGxxHrMQA== |
90 | 90 | 0191b6c7-36d5-71f1-a326-b551d78c0d60 | {"id": 300, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "literate-and-illiterate-world-population", "title": "Literate and illiterate world population", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 23, "subtitle": "Share of the population aged 15 and above who can read and write a short, simple statement on their everyday life.", "originUrl": "https://ourworldindata.org/literacy", "stackMode": "relative", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Illiterate", "color": "#e56e5a", "includeInTable": true}, "property": "y", "variableId": 1076008}, {"display": {"name": "Literate", "color": "#58ac8c", "includeInTable": true}, "property": "y", "variableId": 1076009}], "isPublished": true, "invertColorScheme": true, "selectedEntityNames": ["World"], "selectedEntityColors": {"World": "#d26e66"}, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 300, "map": {"time": 1980, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "slug": "literate-and-illiterate-world-population", "title": "Literate and illiterate world population", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 23, "subtitle": "Share of the population aged 15 and above who can read and write a short, simple statement on their everyday life.", "originUrl": "https://ourworldindata.org/literacy", "stackMode": "relative", "chartTypes": ["StackedArea"], "dimensions": [{"display": {"name": "Illiterate", "color": "#e56e5a", "includeInTable": true}, "property": "y", "variableId": 1076008}, {"display": {"name": "Literate", "color": "#58ac8c", "includeInTable": true}, "property": "y", "variableId": 1076009}], "isPublished": true, "invertColorScheme": true, "selectedEntityNames": ["World"], "selectedEntityColors": {"World": "#d26e66"}, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | literate-and-illiterate-world-population | StackedArea | 2016-08-03 15:48:56 | 2025-06-18 12:41:39 | ic+ZWw7Jr+hWTFjfAenpJQ== |
91 | 91 | 0191b6c7-36d6-7a54-ba58-50134c551106 | {"id": 304, "map": {"region": "Europe", "colorScale": {"baseColorScheme": "YlGn", "binningStrategy": "manual", "legendDescription": "Trust in others – scale from 0 to 10", "customNumericValues": [10, 5, 6, 7, 8, 1]}, "columnSlug": "1317", "timeTolerance": 5}, "tab": "map", "slug": "interpersonal-trust-in-europe", "title": "Interpersonal trust in Europe", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 18, "subtitle": "Average response to the question “Would you say that most people can be trusted?” on a scale from 0 (low trust) to 10 (high trust).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/trust", "chartTypes": ["DiscreteBar"], "colorScale": {"baseColorScheme": "SingleColorTeal", "customNumericColorsActive": true}, "dimensions": [{"display": {"name": "", "unit": "", "shortUnit": "", "tolerance": 5, "isProjection": false, "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 1317}], "isPublished": true, "hideTimeline": true, "baseColorScheme": "SingleColorPurple", "hideRelativeToggle": false, "selectedEntityNames": ["Germany", "United Kingdom", "Spain", "Poland", "Netherlands", "Italy", "France", "Denmark", "Belgium", "Finland", "Serbia", "Bulgaria"]} | {"id": 304, "map": {"region": "Europe", "colorScale": {"baseColorScheme": "YlGn", "binningStrategy": "manual", "legendDescription": "Trust in others – scale from 0 to 10", "customNumericValues": [10, 5, 6, 7, 8, 1]}, "columnSlug": "1317", "timeTolerance": 5}, "tab": "map", "slug": "interpersonal-trust-in-europe", "title": "Interpersonal trust in Europe", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 18, "subtitle": "Average response to the question “Would you say that most people can be trusted?” on a scale from 0 (low trust) to 10 (high trust).", "hasMapTab": true, "originUrl": "https://ourworldindata.org/trust", "chartTypes": ["DiscreteBar"], "colorScale": {"baseColorScheme": "SingleColorTeal", "customNumericColorsActive": true}, "dimensions": [{"display": {"name": "", "unit": "", "shortUnit": "", "tolerance": 5, "isProjection": false, "includeInTable": true, "numDecimalPlaces": 1}, "property": "y", "variableId": 1317}], "isPublished": true, "hideTimeline": true, "baseColorScheme": "SingleColorPurple", "hideRelativeToggle": false, "selectedEntityNames": ["Germany", "United Kingdom", "Spain", "Poland", "Netherlands", "Italy", "France", "Denmark", "Belgium", "Finland", "Serbia", "Bulgaria"]} | interpersonal-trust-in-europe | DiscreteBar | 2016-08-09 22:45:33 | 2024-09-05 09:00:28 | CozAfilmRz+NZi4sA6Sg1A== |
92 | 92 | 0191b6c7-36d7-7fee-9ced-1a8569ca2b51 | {"id": 305, "map": {"time": 2006, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "1331", "timeTolerance": 1}, "note": "Reporting confidence in government corresponds to answering “yes” to the question: “In this country, do you have confidence in the national government?\"", "slug": "oecd-average-trust-in-governments", "title": "Trust in government, OECD average", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 16, "subtitle": "Percentage of survey respondents reporting confidence in the national government. Population-adjusted average across OECD countries.", "originUrl": "https://ourworldindata.org/trust", "dimensions": [{"display": {"name": "OECD average trust in governments", "unit": "%", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1331}], "hideLegend": true, "isPublished": true, "baseColorScheme": "OwidCategoricalB", "selectedEntityNames": ["OECD"], "hideAnnotationFieldsInTitle": {"entity": true}} | {"id": 305, "map": {"time": 2006, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "1331", "timeTolerance": 1}, "note": "Reporting confidence in government corresponds to answering “yes” to the question: “In this country, do you have confidence in the national government?\"", "slug": "oecd-average-trust-in-governments", "title": "Trust in government, OECD average", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 16, "subtitle": "Percentage of survey respondents reporting confidence in the national government. Population-adjusted average across OECD countries.", "originUrl": "https://ourworldindata.org/trust", "dimensions": [{"display": {"name": "OECD average trust in governments", "unit": "%", "tolerance": 5, "isProjection": false, "includeInTable": true}, "property": "y", "variableId": 1331}], "hideLegend": true, "isPublished": true, "baseColorScheme": "OwidCategoricalB", "selectedEntityNames": ["OECD"], "hideAnnotationFieldsInTitle": {"entity": true}} | oecd-average-trust-in-governments | LineChart | 2016-08-09 23:48:27 | 2024-09-05 09:00:28 | 0bR6pG6a0PtlWSvlRNZHNQ== |
93 | 93 | 0191b6c7-36d8-72f5-a5e4-39a8057abd68 | {"id": 306, "map": {"time": 2015, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "note": "For each country, trust data is shown for the latest survey wave in the period 2009-2022. Depending on the country and year, inequality data relates to income measured after taxes and benefits, or to consumption, [per capita](#dod:per-capita).", "slug": "interpersonal-trust-vs-income-inequality", "title": "Interpersonal trust vs. income inequality", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 47, "subtitle": "Share of respondents agreeing with the statement \"Most people can be trusted\". The [Gini coefficient](#dod:gini) measures inequality on a scale from 0 to 1. Higher values indicate higher inequality.", "originUrl": "https://ourworldindata.org/trust", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Share agreeing \"Most people can be trusted\"", "unit": "%", "tolerance": 15}, "property": "y", "variableId": 1076233}, {"display": {"tolerance": 15}, "property": "x", "variableId": 1039568}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideTimeline": true, "hideRelativeToggle": false, "matchingEntitiesOnly": true, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 306, "map": {"time": 2015, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "timeTolerance": 1}, "note": "For each country, trust data is shown for the latest survey wave in the period 2009-2022. Depending on the country and year, inequality data relates to income measured after taxes and benefits, or to consumption, [per capita](#dod:per-capita).", "slug": "interpersonal-trust-vs-income-inequality", "title": "Interpersonal trust vs. income inequality", "yAxis": {"min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 47, "subtitle": "Share of respondents agreeing with the statement \"Most people can be trusted\". The [Gini coefficient](#dod:gini) measures inequality on a scale from 0 to 1. Higher values indicate higher inequality.", "originUrl": "https://ourworldindata.org/trust", "chartTypes": ["ScatterPlot"], "colorScale": {"binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Share agreeing \"Most people can be trusted\"", "unit": "%", "tolerance": 15}, "property": "y", "variableId": 1076233}, {"display": {"tolerance": 15}, "property": "x", "variableId": 1039568}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideTimeline": true, "hideRelativeToggle": false, "matchingEntitiesOnly": true, "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | interpersonal-trust-vs-income-inequality | ScatterPlot | 2016-08-10 23:53:30 | 2025-07-01 11:28:17 | AV1g9ET/6FVRM8IXwS1QjQ== |
94 | 94 | 0191b6c7-36da-7ff5-bff2-cc2c4457fe25 | {"id": 308, "map": {"time": 2015, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "123", "timeTolerance": 1}, "slug": "trust-in-others-vs-trust-in-police", "title": "Trust in others vs. trust in police, Europe", "xAxis": {"max": 9, "min": 4}, "yAxis": {"max": 9, "min": 4}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 22, "subtitle": "Average respondent answers on a scale ranging from 0 (low trust) to 10 (high trust).", "originUrl": "https://ourworldindata.org/trust", "chartTypes": ["ScatterPlot"], "colorScale": {"baseColorScheme": "continents", "binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Trust in police", "unit": "", "shortUnit": "", "tolerance": 5}, "property": "y", "variableId": 1339}, {"display": {"name": "Trust in others", "tolerance": 5}, "property": "x", "variableId": 1317}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideTimeline": true, "comparisonLines": [{}], "hideRelativeToggle": false, "matchingEntitiesOnly": true} | {"id": 308, "map": {"time": 2015, "colorScale": {"baseColorScheme": "BuGn", "binningStrategy": "equalInterval", "legendDescription": ""}, "columnSlug": "123", "timeTolerance": 1}, "slug": "trust-in-others-vs-trust-in-police", "title": "Trust in others vs. trust in police, Europe", "xAxis": {"max": 9, "min": 4}, "yAxis": {"max": 9, "min": 4}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 22, "subtitle": "Average respondent answers on a scale ranging from 0 (low trust) to 10 (high trust).", "originUrl": "https://ourworldindata.org/trust", "chartTypes": ["ScatterPlot"], "colorScale": {"baseColorScheme": "continents", "binningStrategy": "equalInterval"}, "dimensions": [{"display": {"name": "Trust in police", "unit": "", "shortUnit": "", "tolerance": 5}, "property": "y", "variableId": 1339}, {"display": {"name": "Trust in others", "tolerance": 5}, "property": "x", "variableId": 1317}, {"property": "size", "variableId": 953903}, {"property": "color", "variableId": 900801}], "hideLegend": true, "isPublished": true, "hideTimeline": true, "comparisonLines": [{}], "hideRelativeToggle": false, "matchingEntitiesOnly": true} | trust-in-others-vs-trust-in-police | ScatterPlot | 2016-08-11 20:54:16 | 2024-11-15 17:17:56 | 7sF3RgJj+Y5vXsIaSuMJ1Q== |
95 | 95 | 0191b6c7-36db-76dc-af49-ce1256b4e280 | {"id": 311, "map": {"colorScale": {"baseColorScheme": "OrRd", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#e4eaf6", null, null, null, null, null, null, null, null], "customNumericLabels": ["", "", "", "", "", "", null, null], "customNumericValues": [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50], "customCategoryColors": {"<2.5": "#c9e3ee"}, "customCategoryLabels": {"<2.5": "<2.5%"}, "customHiddenCategories": {"<5.0": true, "No data": false}}, "timeTolerance": 5, "tooltipUseCustomLabels": true}, "note": "Countries and regions with rates below 2.5% are coded as \"2.5%\" in the FAO dataset.", "slug": "prevalence-of-undernourishment", "title": "Share of the population that is undernourished", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 45, "subtitle": "Share of individuals that have a daily food intake that is insufficient to provide the amount of dietary energy required to maintain a normal, active, and healthy life.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/hunger-and-undernourishment", "dimensions": [{"display": {"numDecimalPlaces": 1}, "property": "y", "variableId": 1016950}], "isPublished": true, "relatedQuestions": [{"url": "https://ourworldindata.org/undernourishment-definition", "text": "What is undernourishment and how is it measured?"}], "hideRelativeToggle": false, "selectedEntityNames": ["World", "Sub-Saharan Africa (FAO)", "Southern Asia (FAO)", "South America (FAO)", "Northern Africa (FAO)", "Central Asia (FAO)", "South-eastern Asia (FAO)"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 311, "map": {"colorScale": {"baseColorScheme": "OrRd", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#e4eaf6", null, null, null, null, null, null, null, null], "customNumericLabels": ["", "", "", "", "", "", null, null], "customNumericValues": [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50], "customCategoryColors": {"<2.5": "#c9e3ee"}, "customCategoryLabels": {"<2.5": "<2.5%"}, "customHiddenCategories": {"<5.0": true, "No data": false}}, "timeTolerance": 5, "tooltipUseCustomLabels": true}, "note": "Countries and regions with rates below 2.5% are coded as \"2.5%\" in the FAO dataset.", "slug": "prevalence-of-undernourishment", "title": "Share of the population that is undernourished", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 45, "subtitle": "Share of individuals that have a daily food intake that is insufficient to provide the amount of dietary energy required to maintain a normal, active, and healthy life.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/hunger-and-undernourishment", "dimensions": [{"display": {"numDecimalPlaces": 1}, "property": "y", "variableId": 1016950}], "isPublished": true, "relatedQuestions": [{"url": "https://ourworldindata.org/undernourishment-definition", "text": "What is undernourishment and how is it measured?"}], "hideRelativeToggle": false, "selectedEntityNames": ["World", "Sub-Saharan Africa (FAO)", "Southern Asia (FAO)", "South America (FAO)", "Northern Africa (FAO)", "Central Asia (FAO)", "South-eastern Asia (FAO)"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | prevalence-of-undernourishment | LineChart | 2016-08-12 14:47:39 | 2025-03-21 14:29:40 | aecJbt1DqsOuTK8zR58WGA== |
96 | 96 | 0191b6c7-36dc-70fa-9e4b-38f7df9a518e | {"id": 317, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "Primary enrollment rate", "customNumericColors": [null, null, null], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}, "columnSlug": "1344", "timeTolerance": 5}, "slug": "primary-enrollment-selected-countries", "title": "Share of children in primary school age who are in school", "yAxis": {"max": 100, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 27, "subtitle": "Share of children of who are enrolled in [primary](#dod:primary-education) education amongst the total population of children of official primary school age.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/global-education", "dimensions": [{"display": {"name": "Net enrolment rate in primary education", "includeInTable": true}, "property": "y", "variableId": 808860}], "isPublished": true, "selectedEntityNames": ["World", "United States", "United Kingdom", "China", "India", "Indonesia", "Finland", "Brazil", "South Korea", "South Africa", "Germany", "Bangladesh"], "selectedFacetStrategy": "entity", "hideAnnotationFieldsInTitle": {"time": true}} | {"id": 317, "map": {"colorScale": {"baseColorScheme": "GnBu", "binningStrategy": "manual", "legendDescription": "Primary enrollment rate", "customNumericColors": [null, null, null], "customNumericValues": [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}, "columnSlug": "1344", "timeTolerance": 5}, "slug": "primary-enrollment-selected-countries", "title": "Share of children in primary school age who are in school", "yAxis": {"max": 100, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 27, "subtitle": "Share of children of who are enrolled in [primary](#dod:primary-education) education amongst the total population of children of official primary school age.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/global-education", "dimensions": [{"display": {"name": "Net enrolment rate in primary education", "includeInTable": true}, "property": "y", "variableId": 808860}], "isPublished": true, "selectedEntityNames": ["World", "United States", "United Kingdom", "China", "India", "Indonesia", "Finland", "Brazil", "South Korea", "South Africa", "Germany", "Bangladesh"], "selectedFacetStrategy": "entity", "hideAnnotationFieldsInTitle": {"time": true}} | primary-enrollment-selected-countries | LineChart | 2016-08-31 22:32:13 | 2024-12-04 15:12:29 | Pm+ThADhmW29YruqLKZS5w== |
97 | 97 | 0191b6c7-36dd-799d-9ac9-4f46d7cf2140 | {"id": 318, "map": {"colorScale": {"baseColorScheme": "PuBuGn", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": [null], "customNumericValues": [0, 20, 40, 60, 80, 100]}, "timeTolerance": 10}, "tab": "map", "slug": "primary-school-attendance-selected-countries", "title": "Net attendance rate of primary school", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 17, "subtitle": "Total number of students of the official age group for [primary education](#dod:primary-education) who are attending school at any level of education, expressed as a percentage of the corresponding population.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/global-education", "dimensions": [{"display": {"name": "Primary net attendance rate"}, "property": "y", "variableId": 1030590}], "isPublished": true, "selectedEntityNames": ["Lesotho", "Haiti", "Zambia", "Colombia", "Peru", "Zimbabwe", "Mali"]} | {"id": 318, "map": {"colorScale": {"baseColorScheme": "PuBuGn", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": [null], "customNumericValues": [0, 20, 40, 60, 80, 100]}, "timeTolerance": 10}, "tab": "map", "slug": "primary-school-attendance-selected-countries", "title": "Net attendance rate of primary school", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 17, "subtitle": "Total number of students of the official age group for [primary education](#dod:primary-education) who are attending school at any level of education, expressed as a percentage of the corresponding population.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/global-education", "dimensions": [{"display": {"name": "Primary net attendance rate"}, "property": "y", "variableId": 1030590}], "isPublished": true, "selectedEntityNames": ["Lesotho", "Haiti", "Zambia", "Colombia", "Peru", "Zimbabwe", "Mali"]} | primary-school-attendance-selected-countries | LineChart | 2016-09-01 00:12:26 | 2025-05-14 12:39:18 | gDPndAVcwbMG3ivMLP63Hg== |
98 | 98 | 0191b6c7-36df-7f39-859e-b30eaed7abbb | {"id": 319, "map": {"colorScale": {"baseColorScheme": "PuBu", "binningStrategy": "manual", "legendDescription": "Mean years of schooling", "customNumericLabels": ["", "", "", "", "", "", ""], "customNumericValues": [0, 2, 4, 6, 8, 10, 12, 14]}, "columnSlug": "104417", "timeTolerance": 1}, "tab": "map", "note": "Formal education is [primary](#dod:primary-education)/ISCED 1 or higher. This does not include years spent repeating grades. Data for the years before 2015 are estimates, while data from 2015 onwards are projections.", "slug": "mean-years-of-schooling-long-run", "title": "Average years of schooling", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 19, "subtitle": "Average years of formal education for individuals aged 15-64.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/global-education", "dimensions": [{"display": {"shortUnit": "years", "includeInTable": true}, "property": "y", "variableId": 809139}], "isPublished": true, "variantName": "Barro and Lee (2015); Lee and Lee (2016)", "timelineMaxTime": 2020, "selectedEntityNames": ["Syria", "Guatemala", "Andorra", "Switzerland", "World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | {"id": 319, "map": {"colorScale": {"baseColorScheme": "PuBu", "binningStrategy": "manual", "legendDescription": "Mean years of schooling", "customNumericLabels": ["", "", "", "", "", "", ""], "customNumericValues": [0, 2, 4, 6, 8, 10, 12, 14]}, "columnSlug": "104417", "timeTolerance": 1}, "tab": "map", "note": "Formal education is [primary](#dod:primary-education)/ISCED 1 or higher. This does not include years spent repeating grades. Data for the years before 2015 are estimates, while data from 2015 onwards are projections.", "slug": "mean-years-of-schooling-long-run", "title": "Average years of schooling", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "version": 19, "subtitle": "Average years of formal education for individuals aged 15-64.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/global-education", "dimensions": [{"display": {"shortUnit": "years", "includeInTable": true}, "property": "y", "variableId": 809139}], "isPublished": true, "variantName": "Barro and Lee (2015); Lee and Lee (2016)", "timelineMaxTime": 2020, "selectedEntityNames": ["Syria", "Guatemala", "Andorra", "Switzerland", "World"], "hideAnnotationFieldsInTitle": {"time": true, "entity": true, "changeInPrefix": true}} | mean-years-of-schooling-long-run | LineChart | 2016-09-01 19:43:03 | 2024-11-26 11:57:29 | W81gB2hvh6F+MYQ3B4xulw== |
99 | 99 | 0191b6c7-36e0-7549-8250-9c95e30be5e0 | {"id": 320, "map": {"colorScale": {"baseColorScheme": "PuOr", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#8c510a", "#bf812d", "#dfc27d", "#f6e8c3", "#d4dbef", "#c7eae5", "#80cdc1", "#35978f", "#01665e"], "customNumericLabels": [null, null, null, "", "Gender parity", null, null, "", null, null, null, null], "customNumericValues": [0.2, 0.7, 0.8, 0.9, 0.97, 1.03, 1.1, 1.2, 1.3, 1.30018], "customNumericColorsActive": true}, "timeTolerance": 5}, "tab": "map", "note": "", "slug": "gender-ratios-for-mean-years-of-schooling", "title": "Average years of schooling, adjusted gender parity index", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 23, "subtitle": "An [adjusted gender parity index](#dod:adjusted-gpi) of 1 indicates equal average years of schooling between men and women. Values below 1 favor men, and above 1 favor women.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/global-education", "dimensions": [{"display": {"tolerance": 5}, "property": "y", "variableId": 1029318}], "entityType": "region", "isPublished": true, "entityTypePlural": "regions", "selectedEntityNames": ["Czechia", "Somalia", "United Kingdom", "Afghanistan", "Lebanon"], "selectedEntityColors": {"Eastern Europe": "#286bbb", "Advanced Economies": "#970046", "Sub-Saharan Africa": "#8c4569", "Asia and the Pacific": "#00847e", "Middle East and North Africa": "#996d39", "Latin America and the Caribbean": "#c15065"}} | {"id": 320, "map": {"colorScale": {"baseColorScheme": "PuOr", "binningStrategy": "manual", "legendDescription": "", "customNumericColors": ["#8c510a", "#bf812d", "#dfc27d", "#f6e8c3", "#d4dbef", "#c7eae5", "#80cdc1", "#35978f", "#01665e"], "customNumericLabels": [null, null, null, "", "Gender parity", null, null, "", null, null, null, null], "customNumericValues": [0.2, 0.7, 0.8, 0.9, 0.97, 1.03, 1.1, 1.2, 1.3, 1.30018], "customNumericColorsActive": true}, "timeTolerance": 5}, "tab": "map", "note": "", "slug": "gender-ratios-for-mean-years-of-schooling", "title": "Average years of schooling, adjusted gender parity index", "yAxis": {"max": 0, "min": 0}, "$schema": "https://files.ourworldindata.org/schemas/grapher-schema.008.json", "minTime": "latest", "version": 23, "subtitle": "An [adjusted gender parity index](#dod:adjusted-gpi) of 1 indicates equal average years of schooling between men and women. Values below 1 favor men, and above 1 favor women.", "hasMapTab": true, "originUrl": "https://ourworldindata.org/global-education", "dimensions": [{"display": {"tolerance": 5}, "property": "y", "variableId": 1029318}], "entityType": "region", "isPublished": true, "entityTypePlural": "regions", "selectedEntityNames": ["Czechia", "Somalia", "United Kingdom", "Afghanistan", "Lebanon"], "selectedEntityColors": {"Eastern Europe": "#286bbb", "Advanced Economies": "#970046", "Sub-Saharan Africa": "#8c4569", "Asia and the Pacific": "#00847e", "Middle East and North Africa": "#996d39", "Latin America and the Caribbean": "#c15065"}} | gender-ratios-for-mean-years-of-schooling | LineChart | 2016-09-01 20:12:58 | 2025-05-14 12:39:19 | wiH9WbWE/DD2UG0OBTafiA== |
Advanced export
JSON shape: default, array, newline-delimited
CREATE TABLE chart_configs(id VARCHAR, patch VARCHAR, "full" VARCHAR, slug VARCHAR, chartType VARCHAR, createdAt TIMESTAMP, updatedAt TIMESTAMP, fullMd5 VARCHAR);;